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ABSTRACT

Development of a Layered Unsupervised Classifier of Plasma Regions

and a Bootstrap-Ensemble Neural Network Bow Shock Model

by

James Edmond

University of New Hampshire, September, 2024

The use of supervised methods in space science have demonstrated powerful capabil-

ity in classification tasks, but purely unsupervised methods have been less utilized for the

classification of spacecraft observations. We use a combination of unsupervised methods,

being principal component analysis, self-organizing maps, and hierarchical agglomerative

clustering, to classify THEMIS and MMS observations as having occurred in the magneto-

sphere, magnetosheath, or the solar wind. The resulting classification are validated visually

by analyzing the distribution of classifications and studying individual time series as well

as by comparison to the labeled dataset of a previous model, against which ours has an ac-

curacy of 99.4%. The model has a variety of applications beyond region classification such

as deeper hierarchical analysis, magnetopause and bow shock crossing identification, and

identification of bursty bulk flows, hot flow anomalies, and foreshock bubbles. Then using

the bow shock crossings inferred from the previous model as well as the results of another

machine learning model and an online bow shock crossing catalogue, we create a bow shock

dataset of almost 16k crossings. An ensemble of neural networks are trained to predict

the coefficients of a bow shock model function using traditional bow shock parameters as

well as magnetic clock and cone angles. The small size of the dataset means that typical

partitioning of the training set cannot reasonably be done, so the ensemble members are

xv



bootstrap-trained. We show the ensemble to perform better than a single model trained on

the full dataset. The model results show mixed agreement with previous observations and

performs better than the Chao model for varying clock and cone angles and for nightside

bow shock crossings, but slightly underperforms for dayside crossings.

xvi



Chapter 1

Introduction

1.1 General Overview of the Relevant Regions of the Mag-

netosphere

The Sun is a large celestial body at the center of the solar system that continually ejects some

of its plasma as it rotates. Thermal pressure gradients continually accelerate this outgoing

plasma (Parker [1958]) where it transitions from subsonic to supersonic speeds. It is in the

latter regime thereafter that this plasma is referred to as the solar wind. This solar wind

is generally bimodal in its speed and density distributions in that repeated measurements

show a “slow” solar wind, with average speed and density of 400 km/s and 10 #/cc3, and

a “fast” solar wind, with average speed and density 700 km/s and 5 #/cc3 (see chapter 5

of C. T. Russell [2016]).

The solar wind later arrives at Earth and is diverted due to its electromagnetic environ-

ment acting as a fluidic obstacle. In the GSE (Geocentric Solar Ecliptic) coordinate system,

where the x-axis points from the Earth to the sun and the z axis is perpendicular to the

ecliptic plane in which the Earth orbits the Sun, this diversion begins around X =∼ 13.5

Earth radii, or RE (1 RE = 6,371 km). This diverting causes the solar wind to pile up and

become denser as the rate at which more plasma piles on exceeds the rate at which it can

be diverted; this condensing both slows down and heats up the incident plasma, converting

1



Figure 1-1: Depiction of a vertical cross section of the magnetosphere and its outer environs
where the Earth is in the center of the image. Towards the left is the sun with the flow of
solar wind from the Sun to Earth represented with yellow arrows. For the context of this
thesis, all the distinct regions can be represented as one of three groups: the solar wind
(the region of space to the left of the bow shock boundary), the magnetosphere (cumula-
tively representing all regions encompassed within the magnetopause boundary), and the
magnetosheath as the light blue region in between. Image credit to ESA / C. T. Russell.

the supersonic flow to subsonic flow and much incident kinetic energy into thermal energy

(see chapter 10 of Parks [2004]). The boundary that separates the denser, hotter plasma

from the incident solar wind is called the bow shock, and the area that encompasses this

“shocked” plasma is called the magnetosheath. Further in towards Earth is the magne-

tosphere and the boundary it shares with the magnetosheath is called the magnetopause,

which acts as an equilibrium between the pressure of the incoming solar wind and the mag-

netic pressure of the magnetosphere. The magnetosphere encompasses multiple populations

of varying density and energy, but is often low in density (0.1 #/cc3 ≤ nion ≤ 1 #/cc3) and

high in energy (Tion ≥ 1 keV). These regions are depicted in figure 1-1.

The phrase “bow shock” stems from comparisons with a ship (specifically the front, or

2



Figure 1-2: Shock steepening depicted with diagrams. The solid black circle is the source
of waves moving at speed V and the radially propagating waves are represented with the
outer circles which move at speed VS . The left image shows the wave source moving at V
< VS . The middle image shows the source moving at V = VS , which causes the waves to
steepen along the direction of source movement. The right image shows the source moving
at speed V > VS , causing the waves to steepen instead at an angle α and forming a Mach
cone of the same angle.

“bow” of the ship) crossing water. In general, a “shock” is a separation between two fluidic

regions: an upstream (fluid which is flowing towards the shock and has yet to experience its

effects) and a downstream (fluid which has already passed the shock). Classically, quantities

of this downstream fluid can be predicted relative to parameters of the upstream fluid and

are described by the Rankine-Hugoniot (RH) relations by assuming a conservation of mass,

momentum, and energy. A relatively simple way to describe movement through a fluid

progressing to that of a shock can be seen in the form of a wave source and its movement

through a fluid, as seen in Figure 1-2. A physical example of the contours of a shock created

around a hemispherical object can be seen in Figure 1-3. The direction that is perpendicular

and outward-facing from the shock is termed the bow shock normal n̂.

Classically, the motion of a fluid can be described by the Navier-Stokes equations. Mag-

netohydrodynamics (MHD) describes the motion of plasma as a two-fluid representation,

one of electrons and one of ions, by marrying Navier-Stokes with Maxwell’s equations. And

just as there are classical shocks, so also exists the MHD equivalent (see chapter 5 of Priest

[2014] as well as Kennel [1994]). Also classically, shocks convert kinetic energy to thermal

3



Figure 1-3: A shadowgraph of a high speed fluid being diverted about a rounded object. A
loose comparison between the regions in this image and the magnetospheric environment
can be made by analogizing the solar wind to the incident fluid flow on the left, the magne-
tosheath as the shocked fluid just downstream of the shock, and the magnetosphere as the
object and its resulting trail. Image credit at NASA.
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via collisions, resulting in an increase in entropy downstream of the shock. The presence of

collisions is inferred from the mean-free-path of the particles constituting the fluid, which

is very small in many cases and often less than the thickness of the shock. In plasmas,

however, electromagnetic fields can guide the motion of particles in addition to collisions.

This can generate shocks wherein the thickness is much smaller than the mean-free-path,

with such shocks being termed “collisionless.”

Incorporating magnetic fields into the equations of motion for a two-species fluid intro-

duces a large variety of complexities and instabilities (such as the Alfvén wave [Nariyuki

[2022]], tearing [Galeev and Zelenyi [1976]]], and Kelvin-Helmholtz [Masson and Nykyri

[2018]] instabilities to name a small handful), but one most relevant to the distinguishing

of plasma regions is the angle θBn, which is the angle between the bow shock normal and

the magnetic field vector (or interplanetary magnetic field [IMF] in the context of the solar

wind). This is important because, while in classical fluid dynamics, fluid elements travelling

downstream cannot go back upwards, this angle can produce such an effect in collisionless

shocks separately for ion and electron populations. Upstream particles with a combination

of sufficiently high energy and pitch angle can enter the shock, gain energy, and be reflected

back upstream (see section 8.4 of Gurnett and Bhattacharjee [2017]). Since the solar wind is

ever-flowing, there is a continuous presence of these energetic backstreaming particles and

is referred to as the foreshock.

Due to the mass difference between ions and electrons, there are different populations of

foreshock. Distinguishing the range of angles in θBn as either quasi-perpendicular (θBn ≥

45◦) or quasi-parallel (θBn ≤ 45◦), it is known that the electron foreshock can be seen

in both regimes (Fitzenreiter [1995]) while the ion foreshock is restricted to quasi-parallel

angles as reflected ions often get turned around within an ion gyroradius (see chapter 5 of

Balogh and Treumann [2013]). To distinguish between foreshock-contaminated solar wind

5



Figure 1-4: Depiction of both ion and electron foreshocks in the solar wind — Credit to
Oliveira [2015] for captioned image and Kennel et al. [1985] for original image.

and otherwise, solar wind that is far enough upstream such that it hasn’t encountered any

reflected populations or the instabilities such can generate is referred to as pristine solar

wind. Measurements of this plasma are made by spacecraft orbiting the L1 Lagrange point,

such as ACE or Wind, at about 230 RE upstream.

1.2 Bow Shock Modeling

The first empirical model of the bow shock was created by Fairfield [1971] by fitting a conic

section to the bow shock crossings of multiple Imp spacecraft. Although their data included

crossings at non-equatorial altitudes, they rotate their crossings such that all points are in
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the X-Y plane, and then rotate these 2D points by a consistent 4 degrees to account for

angle that solar wind arrives at Earth. Being a 2d problem, fitting a conic section involves

finding the optimal constants to the equation

y2 +Axy +Bx2 + Cy +Dx+ E = 0 (1.1)

that best describe the average bow shock position. Note that the recovered constants

are not parameterized relative to changing pristine solar wind effects and that this model

describes the average boundaries of a 2d asymmetric bow shock.

The first 3d empirical model was constructed by Formisano [1979] and used bow shock

crossings from both HEOS and Imp observations. These crossings were not rotated or

aberrated but the radii were modified by normalizing them relative to the average pressure

according to Rnorm = Robs
nobsV

2
obs

n0V0
where nobs and Vobs are the solar wind number density

and speed of the observations and n0 and V0 were the averages of those quantities for years

1972-3 of their dataset. Additionally, they weight their crossings against those of HEOS-2

in inverse proportion to the amount of time each spacecraft spends in each 1 RE x 1 RE

x 1 RE box across their dataset to discourage fitting solutions from focusing too much on

crossings located in similar small regions of space. They also fit a conic section, but a

simplified 3d one of the form

a11x
2 + a22y

2 + a33z
2 + a12xy + a14x+ a24y + a44 = 0. (1.2)

They assumed symmetries relative to the equatorial plane (i.e. azimuthal [Y-Z], X-Z,

and Z symmetries), hence there are no yz, xz, or z terms. They binned their data across

three intervals of Alfveń Mach number MA 1-6, 6-10, and 10-20, showing increasing bow

shock compression for higher values. They also binned according to magnetosonic Mach
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number MMS for the intervals 1-5, 5-7, and 7-20 and estimated similar constants as in the

MA binning.

Slavin and Holzer [1981] created a 2d empirical model using data from Imp 3 and 4,

HEOS 1, and Prognoz 1 and 2 in which they modified their coordinates to account for the VY

aberration of the solar wind. This was not done like with Fairfield [1971], where a blanket

4 degree aberration correction was incorporated, but rather the aberration correction was

done for each individual crossing (for crossings in which they lacked upstream solar wind

measurements, they assumed a mean solar wind speed of 430 km/s). They start from a

second order surface like that described by Equation 1.1, but remove the xy term. They

do this because the xy interaction term represents an aberration in the coordinates. Both

Fairfield [1971] and Formisano [1979] compared the aberrations of their models to the

expected aberration due to the orbital motion of the Earth, but since Slavin and Holzer

[1981] have preemptively removed the aberration from their data, there is no need for this

term in the fitting. They show that by algberaic manipulation, this surface can instead be

expressed in polar form as

r =
L

1 + ϵ cos θ
(1.3)

where L is the semi-latus rectum and ϵ is the eccentricity. Note however that r is not

the radius to the bow shock from Earth, but is instead the distance from the foci to the

bow shock.

In gas dynamical analysis, an expression relating the bow shock standoff distance ∆ and

magnetopause standoff distance D to the sonic Mach number M and ratio of specific heats

γ of the upstream solar wind based on numerical simulations is

∆

D
= q

(γ + 1)M2 + 2

(γ − 1)M2
, (1.4)
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which comes from combining Equations 29 and 30 of Spreiter et al. [1966] (also see

sources therein) where q = 1.1. This relation is the firmament of many bow shock mod-

els, although modifications are usually incorporated, such as substituting different Mach

numbers (magnetosonic, Alfveń, etc), changing the constant q, and using different values

for γ. Němeček and Šafránková [1991] used bow shock crossings derived from Imp 8 and

Prognoz 10 observations to take such an approach. They used the magnetosonic Mach

number, made q linearly dependent on the ratio of the upstream magnetic field relative to

its average, and used a γ of 1.8 to improve upon their best-fit second order bow shock conic

surface. Their model was updated by Jeřáb et al. [2005] using bow shock crossings from

Prognoz, Magion-4, Geotail, Imp, and Cluster by re-expressing their Mach number term as

(γ + 1)M2 + 2

(γ − 1)M2
→ (γ − 1)M2 + 2

(γ + 1)(M2 − 1)
, (1.5)

using instead the Alfveń Mach number and an improved linear dependence on the mag-

netic field ratio. Their Mach number correction was inspired by the success of the bow shock

model created by Farris and Russell [1994], who cite Landau and Lifshitz [1987] in relating

the upstream sonic Mach number and downstream sonic Mach number via γ according to

gas dynamics theory and the RH relations. The bow shock model of Farris and Russell

[1994] estimate the standoff distance of the bow shock, that is, the position of the nose of

the bow shock along the X axis in GSE coordinates, and its radius of curvature to describe

the bow shock shape. Their usage of Expression 1.5 is to satisfy the condition that the bow

shock move out to infinity as the Mach number approaches 1.

Cairns and Lyon [1995] used 3d ideal MHD simulations to simulate the bow shock for

low Alfveń Mach number. Verigin et al. [2001] uses a similar approach as Farris and Russell

[1994] in modeling the bow shock shape by calculating the bow shock standoff distance and

curvature. Fairfield et al. [2001] notes in the rare cases of low Alfveń Mach number in which
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the standoff distance moves out to 40+ RE that Cairns and Lyon [1995], a modified Farris

and Russell [1994], and Verigin et al. [1997] predict this quite well.

Peredo et al. [1995] constructed a 3d model using bow shock crossing positions across a

variety of spacecraft coupled with hourly-averaged upstream solar wind estimates collected

using King [1979] after both aberrating and pressure-normalizing. They then binned their

data according sonic, Alfvénic and magnetosonic Mach numbers and derived the best-fit

3d conic sections using the simplified form seen in Equation 1.2. They also made a further

attempt in their fitting to account for the variability in BZ by rotating from aberrated

GSE into geocentric interplanetary medium (GIPM, Bieber and Stone [1979]) coordinates

such that BZ in the resulting coordinate system is zero. Finally, they use their best-fit

parameters for the pressure-normalized GIPM-rotated data to express them as explicit

parameterizations of MA by fitting them to a second-order polynomial, producing a final

model that predicts the bow shock location as a function of solar wind dynamic pressure,

IMF, and Alfvén Mach number. After reports of biases in the model predictions (Safránková

et al. [1999]; Merka et al. [2003]), Merka et al. [2005] improved their model where fitting

was done using the Levenburg-Marquardt algorithm (Marquardt [1963]) and the errors were

calculated using a superior error estimation technique (Efron [1979]) which has shown good

results in space physics (Kawano and Higuchi [1995]).

Many of the previous mentioned bow shock models have been fitted for close-to-Earth

bow shock positions (often≤ 50 RE), but at least one model (Bennett et al. [1997]) was made

to account for downtail crossings 100+ RE away, which were observed by Galileo and Pioneer

7. Greenstadt et al. [1990] notes that ISEE 3 bow shock crossings made 110 RE downtail

were consistent with the predictions of the tail-symmetric version of the Fairfield [1971]

model, inspiring Bennett et al. [1997] to use a similar modeling approach. They pressure-

normalize their crossings and construct a modified cylindrical model with the expressions
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ρshock = ρ1 +∆ρ, (1.6)

where

∆ρ = (xn3 − x)(tan(ψp)− tan(ψb)) (1.7)

describes the deviation from the base model given by

ρ1 =

√
L1

1 + cos θ
− (x− x03)2. (1.8)

ψb and ψb are the Mach cone angles for the prevailing and average magnetosonic Mach

numbers, xn is the bow shock nose distance from Earth, xn3 is a modified calculation of xn

involving the MHD and gas dynamical assumptions of Cairns and Lyon [1995] and Farris

and Russell [1994] respectively, and L1 is their updated semi-latus rectum (and not the L1

Lagrange point).

Chapman and Cairns [2003] created a paraboloidal bow shock based on the simulated

bow shock locations of Cairns and Lyon [1995] for Parker spiral angles of θIMF = 45◦ and

90◦ according to the expression

x = as − bs(y2 + z2) (1.9)

where (x,y,z) are in GSE coordinates, as is the standoff distance of the bow shock, and bs

is a flaring parameter that causes the bow shock to expand or contract. as is parameterized

by a 1/M2
A and pressure-normalized dependence and bs is fitted for different azimuthal

angles in ϕ.

Arguably the most widely used bow shock model is that of Chao et al. [2002] owing to its
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extensive parameterization, careful selection of bow shock crossings, and easily interpretable

coordinates and implementability. It models the bow shock using the radially symmetric

functional form

R(θ) = R0(
1 + ϵ

1 + ϵ cos θ
)α, (1.10)

which was inspired from a similar form (with ϵ = 1) used to model the magnetopause

in Shue et al. [1998]. Here, R0 is the standoff distance of the bow shock, α is the flaring

angle, ϵ is a parameter similar to the eccentricity (but not exactly due to the exponentiation

by α), and θ is the cone angle from the x axis. Note that α ≥ 0.5 creates an “open” bow

shock (corresponding to a modified parabola) while α < 0.5 results in a “closed” bow shock

(one corresponding to a modified ellipse such that the contours on the nightside eventually

converge). ϵ is used here in order that it can be made compatible with distant bow shock

crossings (Bennett et al. [1997]). Many of the symmetric models mentioned thus far have

utilized parabolic coordinates in which the origin is at the focus of the modeled conic, but

this model can easily be used and interpreted where the origin is simply the origin in GSE

(the center of the Earth). In the preparation of their dataset, they took care to only select

bow shock crossings that corresponded to a gradual crossing, and in the case of multiple

bow shock crossings, only the middle one was selected. The first point is subtle, but it can

be noted that just because a bow shock crossing is observed in spacecraft data does not

mean that the upstream solar wind conditions at time of measurement cause the equilibrium

bow shock boundary to be at the spacecraft position; rather, in cases of sharp immediate

crossings, it can be the case that the bow shock boundary moved past the spacecraft to a

new equilibrium position beyond it, giving the erroneous impression that the given upstream

solar wind conditions at that time caused the bow shock boundary to be at the spacecraft

position. Applying these filters to their dataset reduced their data size, but resulted in
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a high quality bow shock crossing catalogue. Their fitting was done on crossings that

accounted for the VY aberration but were not pressure-normalized. The D
−1/6
p relationship

coming from theoretical calculations of the magnetopause pressure balance and the bow

shock standoff distance being made a function of Mach number as per Equation 1.4 are

both incorporated in the parameterization of R0. Dmitriev et al. [2003] compared their

model along with Peredo et al. [1995], Verigin et al. [2001], and Farris and Russell [1994]

and found that the model of Chao et al. [2002] was the best for bow shock prediction.

Wang et al. [2015] used Space Weather Modeling Framework global MHD simulations

(Tóth et al. [2005]) to simulate the bow shock under a spectrum of dipole tilt angles to

investigate the dipole tilt dependence. They use a model function comparable to that of

Shue et al. [1998] in which

R = R0(
2

1 + cos θ
)(α+β cos2 ϕ) (1.11)

and α and β are z-axis dependent parameters such that α = αn(αs) for Z ≥ 0 (< 0)

and β = βn(βs) for Z ≥ 0 (< 0). Note that the cos2 ϕ term alone (without Z-dependent α

and β) can describe azimuthal (that is, Y-Z) asymmetry but the use of different parameters

for each hemisphere is required to incorporate North-South (i.e. Z-axis) asymmetry. They

then proceed to make each of their five parameters functions of the dipole tilt, showing a

continual increase in the bow shock standoff distance with increasing dipole tilt and strong

North-South asymmetry.

Lu et al. [2019] built off of the model of Wang et al. [2015] and created a bow shock

model using Imp 8, Geotail, Magion-4, and Cluster bow shock crossings (with upstream

solar wind measurements provided by ACE and Wind). They aberrate their crossings into

corrected GSM (cGSM) where x points along the solar wind flow (accounting for both VY

and VZ aberrations), z points along the component of the geocentric dipole moment that

13



Figure 1-5: Plots of cosϕ, cos2 ϕ, and their sum from 0 to 360circ. cos is anti-symmetric
for the ranges (0,90) and (90,180) whereas cos2 ϕ is symmetric, and their sum breaks the
symmetry for the interval (0,180). However, this function is still symmetric between the
(0,180) and (180,360) intervals (meaning the model is inherently dawn-dusk symmetric).

is perpendicular to x, and y is defined such that ŷ = ẑ × x̂, and then pressure-normalize

their bow shock position and IMF vectors. They used a model function that expresses the

North-South and azimuthal asymmetry using a single set of parameters, which is given by

R = R0(
2

1 + cos θ
)α0+α1 cosϕ+α2 cos2 ϕ (1.12)

where the total flaring angle α is broken into three terms: α0 representing the rotation-

ally symmetric flaring angle, α2 describing the North-South asymmetry similar to Equation

1.11, and α1 capturing the azimuthal asymmetry. Note that any dawn-dusk asymmetry

cannot be captured by this model (see Figure 1-5 for a graphical explanation). They then

parameterize the four parameters as functions of upstream solar wind BZ , dynamic pres-

sure, magnetosonic Mach number, plasma beta, and dipole tilt. Using a test set of Cluster 3

bow shock crossings, they show that overall their model is comparable to Chao et al. [2002],

but that theirs performs noticeably better for dipole tilts with magnitude > 30◦.
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1.3 The Influence of BY on the Bow Shock

The IMF clock angle ϕB represents both IMF BY and BZ . An analysis of the influence

of BY on the bow shock was made with the clock angle using global MHD simulations by

Wang et al. [2016]. They observed that the tail bow shock cross section can be viewed as an

ellipse in which the direction of the major axis is perpendicular to the IMF direction. They

note that for northward IMF, the eccentricity of the tail bow shock cross section increases

with the IMF clock angle, and for southward IMF, the eccentricity decreases with the clock

angle

Studying BY outright on observed bow shock crossings was done by Wang et al. [2018].

They noted several properties, including: (1) The bow shock standoff distance increasing

and flaring angle decreasing as eastward BY (that is, positive BY ) increases, (2) the standoff

distance not changing significantly and flaring angle decreasing less as westward BY (that

is, negative BY ) increases, (3) the magnitude of eastward BY influences the location of the

bow shock nose comparably to that of BZ . They attribute the third point to the fact that

BZ has more influence on the shape of the magnetopause, compensating for some of its

effects on the bow shock.

1.4 The Novel Contributions of This Thesis

In this thesis, we have created a layered unsupervised classifier that can classify THEMIS

and MMS observations into belonging to the solar wind, the magnetosheath, or the mag-

netosphere. This is done using Self-Organizing Maps to get a greatly discretized interface

of the data and hierarchical clustering to classify the resulting nodes in an unsupervised

manner. This approach allows for unique identification of data via feature maps in which

events corresponding to multiple particular features can be visually identified as belonging
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to particular nodes. The hierarchical organization of the nodes also means that the con-

stituent clusters can be “unpacked” and investigated to reveal sub-clusters. We will cover

the source data, data preparation, development, validation, and applications of the classifier

in chapters 3 through 7.

Bow shock crossing times and positions are inferred from the classifications of the model

with upstream solar wind estimates provided by OMNI. Additional crossings are taken from

other sources, including Cluster, Imp 8, Magion-4, and Geotail. These crossings are then

used to create a bow shock model with a neural network implementation using traditional

bow shock parameters as well as the magnetic clock and cone angles. Instead of directly

predicting the bow shock radius for these inputs, we predict coefficients which we supply

to a bow shock model function with known interpretations of the coefficients. Due to the

small size of the training set, we create bootstrap samples of the training data and train

an ensemble of neural networks on these samples. We prune the ensemble and choose

a member size of 12, showing that it outperforms the single fully trained model on the

validation set. The model results show mixed agreement with previous observations and

performs better than the Chao model for varying clock and cone angles and for nightside

bow shock crossings, but slightly underperforms for dayside crossings. The collection of the

source data, data preparation, model development, and the model results are covered in

chapters 3, 8, 9, and 10.
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Chapter 2

An Overview of Statistical

Concepts and Machine Learning

Methods Used

A number of statistical concepts and machine learning methods were used to generate

results, and we cover introductions to them separately here.

2.1 Principal Component Analysis

Principal Component Analysis (PCA, Jolliffe [2011]), provides a matrix Q with shape D x K

to reduce the dimensionality D of a dataset to a reduced dimension K via a linear transform

where K is specified and can vary between one and D. The goal of PCA is to find a new

set of uncorrelated variables, called the principal components, that capture the maximum

variance in the data. These principal components are ordered by the amount of variance they

explain, with the first component explaining the most variance and subsequent components

explaining less. A common way this is done is by computing the eigenvalues and eigenvectors

of the covariance matrix of the data. The eigenvalues quantify the proportions of variance

captured by the eigenvectors and these eigenvectors are the principal components.
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It is analogous to a hyper-rotation of the D-dimensional space in which the cardinal

axes, or principal components, are oriented along directions of decreasing variance. If a

variance threshold is chosen, then a number of the principal components can be selected that

cumulatively represent that variance. This method has limitations in that it is a obviously

a linear method of dimensionality reduction. When data are characterized by non-linear

correlations, this complicated structure can be destroyed in the transformation and can

cause misinterpretations of the resulting components. However, this linearity can also make

it readily interpretable. Once Q is known, its elements, or “loadings”, can be inspected

to ascertain the influence of each feature along any principal component. PCA uses linear

combinations of features to ascertain directions of maximal variance with projections of

the form PCAi =
∑D

a ziaFa where PCAi indicates the ith principal component, {Fa} is

the set of D features, and {zia} are the loadings in the linear combination. Using just the

first two principal components, we can visualize these loadings as vectors that can visually

communicate the importance of each feature in the projection. Plotting these vectors on

top of the first two components of the projection is called a biplot. Using biplots to infer

information from PCA results has a rich history and an introduction to the concept is

covered in Kohler and Luniak [2005]. An example showing how PCA is related to a hyper

rotation and preserves cumulative variance in shown in Figure 2-1.

2.2 K-Means

K-Means (Lloyd [1982]) is one of the most popular clustering algorithms. It partitions data

into k Voronoi-separated clusters where k is pre-specified. To accomplish this, k random

points from the data are selected to act as initial cluster centroids. The distances between

points in the data and the centroids are computed and points are assigned to the cluster

whose centroid they are closest do. The centroid positions are re-computed as the average
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Figure 2-1: Two isotropic 2d gaussians comprised of several hundred points are plotted
in the left plot under the title “Example Data”. The black arrows indicate the positive
direction along each axis with 0 representing x and 1 as y. Histograms along these axes are
shown along the top row of plots on the right. The variance along each dimension, computed
directly as the population-normalized squared deviation from the mean, i.e. 1/n

∑
i(qi−µ)2,

is shown in the title of each plot. Using PCA, new axes are derived that indicate directions
of decreasing variance in their cardinal ordering, shown in the left plot as PCA-0 and
PCA-1. Histograms of the data along these new axes are shown on the bottom row of
plots as well as the variances along these axes. Note that (1) these two gaussians are largely
(but not completely) separable along the PCA-0 axis and (2) the sum of variances across
all axes is preserved (e.g. 1.48 + 1.47 = 2.46 + 0.49) as rotations will preserve sum-of-square
calculations. (1) implies that the dimensionality inherent to separating these two gaussians
can be reduced from two dimensions, 0 and 1, to one, just PCA-0.
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of all the points in their respective clusters. The inertia, or the sum of square distances of

each point from their closest representative, is re-calculated after each iteration, and the

procedure continues until its consecutive changes are small or until a max iteration number is

reached. A common initialization method is K-Means++ (Arthur and Vassilvitskii [2007]),

which makes better choices for cluster centroids by weighting data in proportion to their

square distance from the previously created centroid.

This type of learning is purely competitive in that centroid updates are only affected by

the data in their own clusters. It will have limited success with data that do not contain

spherically separable clusters, particularly those non-convex in shape. A work-around to

the non-convexity difficulty has been to use KMeans on data to resolve many clusters

(often several hundred or more) and then apply a more resilient clustering method to the

cluster centroids and propagate the predictions of this second stage clustering to the data

represented by the centroids. However, this method will still be subject to the competitive

learning biases inherent in K-Means solutions.

2.3 Self-Organizing Maps

In a higher-dimensional space of N points, finding m “prototype” points where m<<N while

also minimizing some predefined distortion criteria is the main goal of vector quantization

(de Bodt et al. [2004]; Gray [1984]). The distortion criteria changes for different methods,

but the most common one involves computing the inertia.

A more robust method for clustering is the Self-Organizing Map (Kohonen [1982]), or

SOM, which uses a combination of competitive and cooperative updates. A SOM is a

method of clustering that is meant to resemble the structure of a neural network. The

neurons are referred to as nodes and they are usually arranged in a square 2d grid (i.e.

the “node-space”). Each node has a weight vector w which is the position of the node
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relative to the data (i.e. in “feature-space”). The relationship between higher-dimensional

data in the feature-space and the 2d grid of the node-space allows for 2d visualizations of

higher dimensional data. To train a SOM, a data point q is presented to the network and

the closest node in feature-space, called the best-matching-unit or BMU, is identified. The

BMU will then be moved closer to q. If we interpret similarity between two points as being

related to their proximity, then moving the BMU closer to q can be described as making

the BMU more similar to q, or more representative of it. An example of the convergence

of a simple SOM on 2d data is shown in Figure 2-2.

To incorporate a form of Hebbian learning, or “neurons that fire together wire together,”

nodes near the BMU are moved closer to q as well (strictly speaking, SOMs are classified as

competitive Hebbian learners). The amount they are moved is proportional both to their

feature-space distance to q (the distance from the node to q as seen in the left plots of

Figure 2-2) and their node-space distance to the BMU (i.e. the distance from the node to

the BMU as seen in the right plots of Figure 2-2). This node-space distance is supplied to the

neighborhood function and usually involves exponentially diminishing distances. Common

neighborhood functions are the gaussian and Ricker wavelet functions, both of which are

reliant upon the neighborhood distance hyperparameter σ to determine the sharpness of

the distribution. The update to the weights of node a per iteration can be expressed with

wa(i+ 1) = wa(i) + α(i)h(i, a,BMU)(q−wa(i)) (2.1)

where i is the iteration number, wa(i) is the weight vector for node a at iteration i, α(i) is

the learning rate at iteration i, and h(i, a,BMU) is the neighborhood value between nodes

a and the BMU at iteration i. The q−wa(i) term represents the feature-space distance of

node a from q and the h(i, a,BMU) term is the neighborhood distance of node a from the

BMU. Convergence of the SOM is guaranteed by specifying a finite number of iterations.
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Figure 2-2: These plots show the convergence of a SOM over iterations on a simple 2d
dataset consisting of two isotropic gaussians. Left: The node positions per iteration in the
data are shown. The positions are initialized over the first two principal components of
the data. For clarity, the positions are plotted as their number in the SOM grid (node 3 is
depicted as a ‘3’). At each iteration, one data point is selected to train the network against
(plotted as X) and the BMU for that point is identified and shown in red. Right: The 2d
SOM grid is shown per iteration. Heatmaps show the fraction of data points that any node
is closest to. At iteration 1, nodes 1 and 4 are the closest nodes to (or, “represent”) about
90% of the data. By the final iteration, the data representation is more equidistributed
across the network. The distribution could be further improved with a better choice of
hyperparameters for this SOM.
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Defining an initial and final α and σ, a decay function determines the learning rate and

neighborhood distance at each iteration i. Commonly used decay functions include a linear

or exponential decay. The weight update for each neuron as seen in Equation 2.1 can be

directly contrasted with the K-Means centroid update, which is given by

wa(i+ 1) = wa(i) +
1

|Ca(i)|
∑

xj∈Ca(i)

(xj −wa(i)) (2.2)

where Ca(i) is the set of points belonging to cluster a at iteration number i, |Ca(i)| is the

cardinality of the set, and the sum is only over points that belong to cluster a at iteration

i. The position for K-Means centroid a at iteration number i+1 is also proportional to

the difference between a point xj and the original centroid position wa(i) and is basically

the same as the (q − wa) term in Equation 2.1. However, there is no learning rate (or

more technically, there is a constant learning rate of magnitude 1) and no neighborhood

contributions. This is because there is no defined topological structure organizing the K-

Means cluster centers.

Another aspect of SOMs is the way the nodes are structured relative to each other. In

the example SOM used in Figure 2-2, a node’s immediate neighbors are those vertically

or horizontally adjacent to it such that node 4 has nodes 1, 5, 3, and 7 as immediate

neighbors, node 5 has nodes 2, 4, and 8 as immediate neighbors, and node 0 only has

nodes 1 and 3 as immediate neighbors. This structured relationship is referred to as the

topology of the network and the type used here is a square topology. Topologies involving

any convex shape are technically possible, but only a handful are really utilized, such as the

hexagonal topology. If a map with a square topology represents a grid-like structure, then

one with a hexagonal topology resembles a style of honeycomb structure. Maps with square

topologies are simpler and easier to visualize whereas hexagonal ones can be more difficult

to visualize. However, this more complex topology can often more compactly represent data
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than a square topology and can have less edge effects at the borders of the map. We only

consider a square topology for our model.

The quantification of similarity between a SOM and the data is the quantization error

Q, given as

Q =
1

N

N∑
i=1

|xi −BMU(xi)| (2.3)

where xi is the i
th point of a dataset of size N and BMU(xi) is the BMU for point xi.

This is simply the concept of inertia described previously, but normalized to the size of the

data. A survey of SOM applications and metrics used to verify their accuracy can be found

in Kohonen [2014].

2.4 Hierarchical Clustering

2.4.1 The Method

Hierarchical clustering involves using one of two approaches. Agglomerative clustering as-

sumes that all data points are individual clusters and that they can be iteratively merged

based on the clusters’ similarity. This is called the “bottom-up” approach to hierarchical

clustering. The complement to this is divisive clustering, which assumes all data initially

belongs to a single cluster and iteratively separates data into heterogeneous subclusters,

called the “top-down” approach. We use the hierarchical agglomerative method as imple-

mented in the scikit-learn package (an overview of various hierarchical clustering methods

is covered in Nielsen [2016]).

The quantification of similarity between a cluster A and B is computed using a linkage

function, for which there are several common types: Maximum (or complete) linkage will

define the distance from A to B to be the largest pairwise distance between a point in
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A and another in B. Minimum (or single) linkage defines the distance as the minimum

pairwise distance. Average linkage will define the distance to be the average of the data

of A to the average of the data of B. Ward’s linkage does not use distance in the previous

senses. Rather, it defines the distance between two clusters A and B as the variance of a

new cluster obtained combining A and B. Since the variance is computed as the sum of

square deviations from the mean (SSD), the clusters that will be merged are the ones which

minimise this sum.

Because this method is hierarchical, one needs to define stopping criteria for cluster

merging. This is done by visualizing the order of merging using a dendrogram where clusters

are shown on the x axis as individual vertical lines and their merge order can be inferred

from when their lines are horizontally merged. The position on the y axis of the merging

is the SSD of the merged clusters. The dendrogram of the entire agglomerative merging

process is visualized first and then a threshold distance is chosen so that only clusters

with SSD below this cutoff will be considered. A small example showcasing agglomerative

hierarchical clustering with a Ward linkage on eight data points is shown in Figure 2-3.

In hierarchical agglomerative clustering, if there are N clusters, then all N-choose-2

cluster pairings are considered for possible merging. The optimal merger is determined using

a linkage function, which produces a number representing the similarity of the clustering

where smaller numbers indicate more similar clusters, and the pair with the smallest linkage

function value are merged. In some linkage functions, this can be interpreted as a distance,

such as with the single, complete, average, and centroid linkages. The linkage we used,

Ward’s linkage, is instead concerned with identifying the cluster pair that minimizes the

in-cluster variance.

A disadvantage of using hierarchical clustering is that getting predictions on data not

seen during training can be difficult as the method is inherently transductive, i.e. it is
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Figure 2-3: A basic example demonstrating how clusters are merged with agglomerative
hierarchical clustering using a Ward linkage on a handful of labeled data points. The 2d
distribution of the data are shown on the left and their cluster mergings are depicted using
different colors and linestyles of ovals. These data have three “natural” clusters given by
(1,2,3), (4,5,6), and (7,8). The merge order of the hierarchical clustering is also shown on
the right in the form of a dendrogram. Some of the first clusters to be merged are the
(1,2), (4,5), and (7,8) clusters due to the proximity / inertia of the constituent points. The
next clusters to form are the (1,2,3) and (4,5,6) clusters because the points 3 and 6 are
in close proximity to the (1,2) and (4,5) clusters. Then the (1,2,3,4,5,6) cluster is created,
followed by the merging of all data into a single cluster. The “compactness” of clusters is
also evident by the heights of the mergings in the dendrogram. The mergings in the tree of
the clusters (1,2), (1,2,3), (4,5), (4,5,6), and (7,8) are quite short, indicating that the SSD
of those clusters is small (e.g. possessing little variance / being quite similar). However, the
SSD of the (1,2,3,4,5,6) and (1,2,3,4,5,6,7,8) clusters is very tall, representing how there is
a large jump in variance once these clusters are formed.
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trained on a specific dataset and does not generalize to unseen data. This limitation can

sometimes be circumvented depending on the linkage used but certainly not in general.

For example, in using a centroid linkage, one could simply assign new data to clusters

whose centroids are closest, but this concept of closeness or similarity becomes vague in

the context of other linkages, as some linkage types are capable of uncovering non-convex

cluster distributions.

2.4.2 Hierarchical Clustering + SOMs

Hierarchical clustering being a transductive method is an enormous limitation for many

clustering purposes as well as the resources required to compute the solution (in terms of

memory) and thoroughly analyze said solution (user-hours spent analyzing). This issue

can be addressed by creating an interface for the data, something that will represent the

distribution of the data but is static and not modified. A trained SOM can act as such

an interface. Hierarchical agglomerative clustering can then be used to organize the nodes

of the SOM into clusters. The cluster assignments of the nodes are then propagated to

the data according to their BMUs. In this way, data not seen during training is always

assignable to some node of the SOM and all nodes belong to some cluster. By using a SOM

to represent the data, we are able to use what is traditionally a transductive method in an

inductive manner. We show an example of this in Figure 2-4.

2.5 Artificial Neural Networks

Artificial neural networks are a subset of machine learning algorithms that can act as

advanced functional estimators (Funahashi [1989]). Their architecture is inspired from the

structure of the human brain in which neurons process, receive, and transmit signals to

other neurons (McCulloch and Pitts [1943]; Rosenblatt [1958]; Hebb [1949] and see a basic
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Figure 2-4: An example showing the combined usage of hierarchical agglomerative clustering
with a Ward linkage on a SOM consisting of ∼ 230 nodes. The 2d data is composed of
several 10,000’s of points across five distributions, an isotropic gaussian at the top, two
conjoined isotropic gaussians in the bottom, and two interlocking semicircles on the bottom
left, all of which are seen in black on the four plots on the right. The nodes of the SOM
are seen in different colors across each of the four plots where the different colors represent
different clustering solutions. The dendrogram at left shows the merge order up to the last
three mergings and the horizontal lines indicated different cutoff SSD values we choose to
analyze different clustering solutions. Note that the number of times the horizontal lines
intersects with the vertical lines of the dendrogram indicate the number of clusters. The
clustering solutions found by using a cutoff SSD of 70, 50, 20, and 11 are shown in the
plots on the right in top-left, top-right, bottom-left, and bottom-right order. The relative
heights of the dendrogram indicate that the “best” clustering solution is likely one with a
50 SSD cutoff, corresponding to the top right plot. However, notice that finer solutions
can largely distinguish between the three isotropic gaussians, the semicircles, and the nodes
caught between the gaussians!
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Figure 2-5: A simple depiction of a neuron that illustrates the dendrites (signal receivers),
soma (the body of the neuron), axon (signal transmitters), and axon terminals (connections
to other neurons) - Original image in U.S. public domain, has been modified to remove
additional labels - Retrieved from https://commons.wikimedia.org/wiki/File:Neuron.jpg

diagram depicted in Figure 2-5). Their ability to approximate functions stems from multiple

fundamental aspects, some of which will be briefly elaborated on.

One component is the modification (or, “activation”) of signals from neuron-to-neuron

via activation functions, analogous to the soma in the neural structure. Expressing the

concept in terms of linear algebra, a sequence of linear transformations can itself be rep-

resented as a single linear transformation. However, a nonlinear modification of the signal

can enable modeling of nonlinear behavior.

Another aspect is the degree of connections between neurons. Organizing the neurons

into layers where adjacent layers are fully connected is a standard “feed-forward” architec-

ture and consists of an input layer (with the number of neurons in this layer matching the

dimensionality of the input data), an output layer (with size equal to the dimensionality

of the desired output), and in-between layers called hidden layers. This type of structure

is referred to as a Multilayer Perceptron (MLP). An example is shown in Figure 2-6. An
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Figure 2-6: A simple diagram of a single-hidden layer multilayer perceptron (MLP). x is the
3-dimensional input data colored in green on the left and corresponds to the input layer. Z
is the 2-dimensional output colored in red on the right and is the output layer. The layer in
blue in between is called the hidden layer and is represented with the 4-dimensional variable
y. The neural connections between the input and hidden layer consists of scalar values that
are collectively represented by the matrix W01. The values for the connections between the
hidden and output layers are W12. The W01 and W12 terms are collectively referred to as
“weights.” The weights can only perform multiplicative changes (e.g. hyper-stretching) to
the data and the bias weights, b01 for the hidden layer and b12 for the output layer, supply
the additive changes (e.g. hyper-shift). If the activation function is σ, then expressions for
y and z are y = σ(W01x+ b01) and z = σ(W12y + b12).

MLP with a single hidden layer has been proven to be a universal approximator (Cybenko

[1989]; Hornik et al. [1989]) and the same is true for multiple hidden layers (Hornik [1991]).

Increasing the number of neurons in a network can increase its adaptive capability. How-

ever, it is usually better to add connections by adding more hidden layers instead of just

increasing the size of the layers (Schölkopf et al. [2007]).

Last is the appropriate modification of the weights. This requires quantifying how

“wrong” the neural network is given a prediction and how to update the weights accordingly.

The inaccuracy of the neural network in estimating a function is expressed using a loss
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function, the most popular for regression being the mean squared error (MSE). If N is the

size of the dataset, and yi and ŷi were the observation and prediction for point i, then the

MSE would is written as 1
N

∑N
i=1(yi − ŷi)2.

Updating the weights of an MLP can be expressed as a hyperparameter optimization

problem, e.g. what weights minimize the loss function? Many classical optimization meth-

ods use the derivative (either in the form of the gradient or the hessian) of the loss function to

find optima, such as Newton-Raphson or Gradient Descent (Cauchy [2009]), but derivative-

free methods exist, such as Nelder-Mead (Nelder and Mead [1965]) and Powell’s method

(Powell [1964]). A common optimizer used to update the weights in neural networks is

Stochastic Gradient Descent (SGD, Robbins and Monro [1951]) in which the full gradient

(that is, the calculation of the gradient over the entire dataset) is replaced with an esti-

mation of the gradient over a fraction of the dataset. The weight update, for an arbitrary

weight w at iteration number t, is simply wt = wt−1 − α ∂L
∂wt−1

where α is the learning rate

and L is the loss function. A variety of optimizers for neural network training exist, and one

of the most powerful is Adam (Kingma and Ba [2014]). It uses the first (m̂t) and second

(v̂t) moments of the gradients to estimate the new weight as wt = wt−1 − α m̂t√
v̂t+ϵ

.

However, across many of these optimizers, the derivatives of the loss function are still

necessary. The most popular method used to supply these gradient calculations is backprop-

agation (Rumelhart et al. [1986]). In essence, it applies the chain rule to the loss function

with respect to the weights. The differentiability of the loss function and having neurons

output over continuous intervals are improvements over original applications.

2.6 Ensemble Models and Bootstrap Aggregation

It is a common thought that when presented with a distribution of predictions, using the

average prediction is a good choice. In 1906, Sir Francis Galton observed amongst partici-
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pants at the West of England Fat Stock and Poultry Exhibition in Plymouth, England that

the average guess (1207 lbs) of an ox’s weight (1197 lbs) across 800 participants was correct

to within 1% error and better than any individual guess (Galton [1907]). In this historical

example, each participant is a predictor and the crowd is the ensemble of predictors.

In general, any collection of models can together create an ensemble model. The models

can be of the same architecture or different types. Ensemble modeling is used in many

different forms in machine learning, and Zhou [2012] covers a number of them. Famous

examples of ensemble models include Random Forests (Breiman [2001]) and Bagging Trees

(Breiman [1996]), using bootstrap aggregation, and XGBoost (Chen and Guestrin [2016]),

using boosting.

The form of ensemble learning that will be used in this thesis is bootstrap aggregation,

or bagging. The concept of bootstrapping was introduced by Efron [1979] and showed an

alternative way to calculate parameter estimates by sampling from the data with replace-

ment. To explain by example, consider estimating the variance of some data. Traditionally,

the variance would just be expressed as the difference of the expected value of the square

from the square of the expected value, e.g. σ2 = E[X2] − E[X]2. Using bootstrapping,

one would create multiple bootstrap samples of length N from the data and calculate the

variance for each bootstrap sample. This yields a distribution of estimates for the variance

and a good estimate would be to simply take then mean.

Bootstrap aggregation, or “bagging” involves creating multiple training datasets by

sampling from the original training set with replacement (bootstrapping) and training a

model on each dataset so that all the model’s results can collected (aggregation). The

aggregation of model results can be done differently, either explicitly keeping the distribution

of predictions or simply taking the average. Ensemble methods using bagging may utilize

this concept in different ways. While Bagging Trees explicitly use bagging in this way,
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Random Forests are distinct in that they randomly select a subset of features for subsets of

each tree to learn from so that the generated trees possess less correlation with each other

(making them better predictors).

For some ensemble methods, different metrics may be used for constructing the optimal

ensemble. One such method is the Out-of-Bag (OOB) error for a single trained model of

the ensemble. The training data that was not included in the bootstrap sample is referred

to as the OOB sample, and the model’s error on it is computed as the OOB error. The

full OOB error (that is, the OOB error across all the models) may be computed in different

ways, such as a simple or weighted average of the predictions vs the true answer using

MSE. Another method is to use a validation set that is distinct from the training set and

to calculate the errors on the validation set.

Determining the proper number of members of an ensemble is also done in different

ways, dependent upon the models or methods being used. One is ensemble growing in

which the ensemble, starting from a single model, has more models added to it until the

ensemble error begins to worsen. An opposite approach is ensemble pruning where a suite

of models are trained and models are removed until the ensemble error begins to increase.
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Chapter 3

Source Data

With respect to the final results, there are two forms of source data used. One is the data

used to build an unsupervised classification model of the plasma regions in and around the

magnetosphere and will be covered first in Section 3.1. Next are the data used to create

a new bow shock model covered in Section 3.2. The latter are taken from a variety of

spacecraft as well as the results of another spacecraft region classifier.

3.1 Unsupervised Classifier Source Data

We use data from two missions, Time History of Events and Macroscale Interactions dur-

ing Substorms (THEMIS, Angelopoulos [2008]) and the Magnetospheric Multiscale Mission

(MMS, Burch et al. [2016]). These datasets includes measurements of magnetic field B,

the ion velocity V, the ion scalar temperature T , and the ion density n, a cumulative eight

features. We show how the data is prepared for both missions.

3.1.1 THEMIS

THEMIS is a collection of five spacecraft (THEMIS-A, B, C, D, and E) with equatorial

orbits with the purpose of observing different aspects of magnetic storms and substorms.

We used data from March 2007 to the end of December 2020. THEMIS-B and C were

moved to lunar orbit in 2009 to become the Acceleration, Reconnection, Turbulence, and
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Electrodynamics of the Moon’s Interaction with the Sun (ARTEMIS, Angelopoulos [2014])

mission where they would make measurements departing from what would normally be seen

by THEMIS-A D, and E. We only use THEMIS-B and C data up until end of year 2009.

The ion velocity, temperature, and density measurements of THEMIS are from the Elec-

trostatic Analyzer instrument (ESA, McFadden et al. [2008]) and are available at multiple

time resolutions, such as “reduced” (ESAR) and “full” (ESAF) data packets. The ESAR

offers higher time resolution at once per spin (∼3 secs), but the cold temperatures of typical

solar wind mean that their distributions are narrow and require sufficiently high angular

resolution to resolve. The ESAF packets sacrifice time resolution for higher angular reso-

lution and are available in two formats, 32-spin (96 sec) in fast survey mode and 128-spin

(∼6.5 minutes) in slow survey mode. Figure 5 of McFadden et al. [2008] illustrates the

difference in angular resolution. The data are flagged for quality and we use quality zero

data, indicating no issues. The magnetic field measurements are from the Flux Gate Mag-

netometer (FGM, Auster et al. [2008]) and are collected at spin resolution. This data is

then averaged down to the resolution of the ESAF measurements to synchronize them, as

illustrated in Figure 3-1.

3.1.2 MMS

MMS is a constellation of four spacecraft (MMS-1, 2, 3, and 4) flying in equatorial orbits

in mutual close proximity to make electron-scale measurements. The ion measurements are

taken from the Dual Ion Spectrometer (DIS) as part of the Fast Plasma Investigation (FPI,

Pollock et al. [2016]) suite. Multiple ion spectrometers per spacecraft makes it possible

to make measurements below spin resolution. The magnetic field measurements are taken

from the Flux Gate Magnetometer (FGM, Russell et al. [2016]) and are available at 10 ms.

These magnetic field measurements and ion measurements are averaged down together to
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Figure 3-1: Basic graphic visualizing how the THEMIS data is averaged down across dif-
ferent time resolutions. The ESAF data products (V, n, and T) have two different time
resolutions but the FGM products (B) used have constant resolution. The middle time is
selected between adjacent points and the new data point is created by averaging over all
data in that interval. The joined data (Avg’d) will then have similar resolution as the ESAF
products.

1 minute resolution. Data from MMS 1, 2, and 3 span September 2015 to December 2021.

Due to damage to the spectrometers of MMS 4, we only use data from September 2015 to

7 June 2018.

3.1.3 Data Cleaning

The THEMIS and MMS datasets possess 8.13 and 4.09 million points, respectively. The

methods we apply to these data can be very sensitive to outliers and the size of magnetic field

measurements closer to Earth could impact our ability to separate them in an unsupervised

manner, so we constrain our data to be between 7 and 35 Earth radii. This final filtering

leaves us with 9.64 million points, 4.09 million (42.4%) being MMS and 5.55 million (57.6%)

being THEMIS. We separate our data with a test-train split of 95% and 5%, giving us a

training size of ∼482k points. The distributions of the magnetic field, ion velocity, ion
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Figure 3-2: The distributions of all data collected, both training and testing. It is apparent
from the density and temperature distributions (both in log10 scale) that multiple popula-
tions are present: Sparse (0.1 #/cc < n < 1 #/cc), moderate-density (1 #/cc < n < 30
#/cc), and dense (n > 30 #/cc) plasma and very cold (T < 10’s eV), warm (10’s eV < T
< 1 keV) and hot (T > 1 keV) plasma. These different peaks in distributions are ideal for
clustering.

density, and ion temperature measurements are shown in Figure 3-2. The data described

thus far will be used to build a classifier to classify THEMIS and MMS observations into

solar wind, magnetosheath, or magnetosphere.

3.2 Bow Shock Model Source Data

To estimate the position of the bow shock as a function of upstream solar wind parameters,

we need a way of getting reliable upstream solar wind estimates. For THEMIS and MMS,

we cannot simply take the solar wind-classified data in proximity to a bow shock crossing as
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such observations are contaminated by the ion foreshock in quasi-parallel regions, meaning

that such measurements will be hotter and more turbulent, affecting quantities such as the

plasma beta and magnetic clock and cone angles. OMNI data will be used to provide more

accurate estimates of these quantities for some spacecraft missions.

3.2.1 Cluster

Cluster (Escoubet et al. [2001]) is a constellation of four spacecraft (termed Cluster-1, 2, 3,

and 4) orbiting in highly non-equatorial orbits so as to make measurements in the polar

cusp. The magnetic field measurements are taken from the Flux Gate Magnetometer (FMG,

Balogh et al. [1997]) at spin-averaged resolution (∼4.5s) and then averaged down to 1 minute

resolution. The ion measurements are taken from the Hot Ion Analyzer (HIA) which is part

of the Cluster Ion Spectrometry experiment (CIS, Rème et al. [1997]) and are spin-averaged

to be available at spin resolution. Due to technical failures and anomalies, the data used

here are only for Cluster 1 (up to 1 April 2011) and Cluster 3 (up to 11 November 2009).

The quality of the measurements are represented with integers in which a three denotes

a measurement with no known errors, a two indicates that minor issues are present, and

a four represents specially cleaned data. We take all data with quality flags ≥ two and

average them down to 1 minute resolution. These data are conjoined with the prepared

magnetic field data to yield 7.83 million points.

3.2.2 OMNI

OMNI (King and Papitashvili [2005]) is a database created from 20 spacecraft, including

Imp 8, Wind, ACE, and Geotail, containing estimates of upstream solar wind that impacts

the Earth’s magnetosphere. These estimates are determined from the planar propagation

method, the key assumption being that the magnetic field and plasma observations mea-

sured upstream correspond to a point on a plane that propagates at the speed and direction
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of the velocity vector V. Taking these observations as points of phase fronts measured at

time t and position Ro, determining when this phase front meets a point downstream at

time t’ and position Rd is simply a ballistics problem. Rd is taken to be the bow shock nose,

which is calculated using both the Shue magnetopause (Shue et al. [1998]) and Farris and

Russell bow shock (Farris and Russell [1994]) models (accounting for the +30 km/s aberra-

tion in the Y direction in GSE). n is the phase front normal (PFN) and is determined using

Minimum Variance Analysis (MVA, Sonnerup and Cahill Jr. [1967]). All these parameters

known, the time shift of these phase fronts is then given by ∆t = t′ − t = n(Rd−Ro)/nV .

Note that two immediate shortcomings of this approach is (1) the planar propagation

technique can’t account for curvature and (2) estimates for data that are far away from the

bow shock nose (e.g. nightside flank measurements of Imp 8) may be inaccurate, although

the time delay between these positions may be slight. There have been attempts to provide

better estimates than the phase-front propagation technique (O’Brien et al. [2023]).

These data offer magnetic field and plasma observations as well as geomagnetic indices.

They are made available at multiple resolutions, including 1-hour, 5-minute and 1-minute.

We use the 5-minute resolution dataset. In addition to the primary publication, a detailed

description of how the 1-min and 5-min resolution OMNI datasets are prepared can be

found at https://omniweb.gsfc.nasa.gov/html/omni min data.html

3.2.3 Imp 8

Imp 8, also known as Explorer 50, was a single spacecraft containing instrumentation to

measure magnetic fields, plasma flow, and energetic particles. Intended to make observa-

tions in both the solar wind and magnetotail, its average orbital radius was about 35 RE .

Its exact orbital patterns varied throughout the mission with largest apogee and smallest

perigee being 45 and 22 RE , respectively. An overview of history and instrumentation of

39



the spacecraft can be found in Paularena and King [1999].

3.2.4 Geotail

Geotail was a spacecraft whose primary science goal was to investigate the structure and dy-

namics of the geomagnetic tail. It possessed instrumentation to measure magnetic and elec-

tric fields, plasma flows, energetic particles, and plasma waves. An introductory overview

and brief description of its instrumentation and orbits can be found in Nishida [1994].

3.2.5 Magion-4

Magion-4 was a subsatellite of the Interball project, a four spacecraft mission. Interball

was comprised of two pairs of spacecraft: Interball-1 and Magion-4 as the “tail” pair and

Interball-2 and Magion-5 as the “auroral” pair. All spacecraft had highly elliptical, polar

orbits. The scientific intent of the mission was to investigate the global dynamic charac-

teristics of magnetospheric processes as well as small scale features of these processes at

the key plasma regions of the Earth’s magnetosphere and its neighborhoods. It had instru-

mentation to measure plasma flows, electric and magnetic fields, plasma waves, solar radio

and X-ray emissions, and UV auroral emissions. A description of the instruments, mission

objectives, and early observations can be found in Zelenyi et al. [1997].

3.2.6 Wind

Wind is a spacecraft orbiting the L1 Lagrange point (with an XGSE / YGSE displacement

of ∼ 35 and 100 RE from the Sun-Earth line). It, along with ACE, acts as an upstream

monitor of the solar wind and is used to provide the upstream data for OMNI calculations.

It has instrumentation to measure magnetic fields, radio and plasma waves, solar wind

plasma composition, 3d distributions of ions and electrons, energetic particles, and gamma

rays. An brief description of the spacecraft, its instruments, and its early results can be
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THEMIS-A B C D E Total

Original 222 166 264 363 294 1,309

OMNI-aligned 191 155 243 324 260 1,173

Table 3.1: THEMIS Crossings

MMS-1 2 3 4 Total

Original 535 534 535 134 1,738

OMNI-aligned 306 307 310 131 1,054

Table 3.2: MMS Crossings

found in Ogilvie and Desch [1997], and a reviews of its contributions to the space physics

community can be found in Wilson III et al. [2021].

3.2.7 Bow Shock Crossing Preparation

Our determination of a bow shock crossing from data and the resulting collection of up-

stream solar wind parameters changes across the different datasets. We outline the three

methods below. Note that for methods where we align crossing times with OMNI, we re-

move crossings containing any amount of NaNs among the parameters of interest (magnetic

field vector, plasma beta, magnetosonic mach number, and dynamic pressure).

THEMIS + MMS

Using our unsupervised classifier, we infer the times of 3,047 bow shock crossings from

classifications of THEMIS and MMS data. The times are then aligned with 5-minute

resolution OMNI data to have estimates of upstream solar wind conditions during the

times these spacecraft cross the bow shock. The positions of the spacecraft are retained

and conjoined with the OMNI estimations of pristine solar wind magnetic field components,

magnetosonic mach number, plasma beta, and dynamic pressure. The exact procedure for

constructing these crossings are given in section 7.2. The crossing counts per spacecraft for

both THEMIS and MMS missions are seen in Tables 3.1 and 3.2.

41



Cluster

The bow shock crossing times from Cluster 1 and 3 are taken from Nguyen et al. [2022]

wherein they used their classifier to classify a variety of spacecraft observations into solar

wind, magnetosheath, and magnetosphere. They reported 3,225 and 2,005 (5,229 in total)

from Cluster 1 and 3, respectively. Specifically, they are retrieved from

https://zenodo.org/records/5668298#.ZFedt0jMJYh. To determine these crossings from

their classifications (as well as bow shock crossings from other spacecraft in their dataset),

they defined a bow shock crossing event as a 10 min interval that contains as much mag-

netosheath points as solar wind points. Their Cluster bow shock catalogue records the

crossings according to crossing number (for the particular spacecraft), the start and end of

the 10 minute interval, and the probability they estimate as a bow shock crossing occur-

ring within the interval. Upon manual inspection of the Cluster 1 catalogue, it is found to

contain 567 redundant entries. These are redundant in that the same time intervals are re-

peated from earlier crossing events. No redundancies are present in the Cluster 3 catalogue.

Thus, the number of unique bow shock crossings for Cluster 1 is 2,658 with a revised total

of 4,663.

To select a single time to represent the crossing, we select the middle time of each 10-

minute interval. Then using the Cluster dataset we originally prepared for our classifier

(but ultimately did not use), we extract the positions of Cluster 1 and 3 according to these

middle times. Our Cluster dataset was created by preserving data with quality flags of 2

(indicating minor problems) and above (3 for no issues, 4 for particularly cleaned). When

we align the middle times of these bow shock crossing intervals with our Cluster dataset,

we recover 4,543 data points, indicating that the remaining 120 points were inferred from

poor-quality Cluster data.

With these 4,543 crossings for which we have the Cluster spacecraft positions, we now
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Cluster 1 Cluster 3 Total

Nguyen et al. [2022] 2,658 2,005 4,663

Cluster Quality ≥ 2 2,610 1,933 4,543

OMNI-aligned 2,476 1,848 4,324

Table 3.3: Cluster Crossings - Note that the crossings reported here for Nguyen et al. [2022]
do not include the repeated entries.

align these with 5-minute resolution OMNI data. We find that the number of crossings

for which we have available OMNI data is 2,476 and 1,848 crossings for Cluster 1 and 3,

respectively (with 4,324 in total). A table showing the reduction in crossing counts across

these filters is shown in Table 3.3.

Imp 8 + Geotail + Magion-4

The crossings from Imp 8, Geotail, and Magion-4 were pre-prepared and hosted in the Space

Physics Data Facility database. They additionally contained some crossings for Cluster 1,

but we did not include these since we have already prepared crossings from Cluster. The

spacecraft data cover from 1973 - 2000 for Imp 8, 1995 - 1997 for Geotail, and 1995 - 1996

for Magion-4. A statement indicating those responsible for the creation of the dataset is

taken directly from the webpage and included here exactly:

“The basic IMP 8 observed parameters were provided by IMP magnetometer

and plasma teams at GSFC (A. Szabo, J. Merka) and MIT (J. Richardson,

K. Paularena). The database will grow to encompass all 1973-2001 IMP 8

bow shock crossings. Geotail bow shock crossings currently include 1995, 1996

and 1997 at the bow shock flanks but will grow to include all crossings from

1995 onward. The Geotail crossing were identified by R. Kessel (NSSDC). Two

years worth - 1995, 1996 - of Magion-4 (Interball-Tail’s sub satellite) bow shock

crossings were supplied by J. Safrankova and Z.Nemecek. Cluster bow shock

crossings were determined from the prime parameters by R. Kessel and students.
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Imp 8 Geotail Magion-4 Total

Original 11,455 813 834 13,102

Time span ≤ 10 min 10,036 n/a n/a n/a

NaNs removed 6,937 810 825 8,572

Table 3.4: Crossings for Imp 8, Geotail, and Magion-4. Note that the time span variable is
only used for Imp 8 and measures the time gap between adjacent observations in which a
bow shock crossing was inferred to have occurred between.

Cluster crossings are currently supplied for the first two years of operation - 2001

and 2002 - from one satellite, but will grow to include subsequent years.”

These data include variables that are only defined for particular spacecraft. The Imp

8 data include the time gap (called “Timspan” in the data itself) between consecutive

observations in which a bow shock crossing was inferred. In processing this data, we remove

all crossings for Magion-4 and Geotail that contain NaNs. We repeat this for Imp 8 crossings,

but also require that the time span be ≤ 10 minutes (to avoid crossings inferred from large

gaps). This reduces the number of crossings from 13,102 to 11,683. Removing the NaNs

from the dataset reduces this further to 8,572.

The way these crossings are connected to upstream solar wind conditions is done dif-

ferently per spacecraft. Imp 8 serves as its own upstream solar wind monitor such that

the reported upstream conditions are taken directly from Imp 8 when it was in the solar

wind. Geotail and Magion-4 use 10-minute averaged upstream Wind data that are time-

shifted to the approximate bow shock nose location at 14 RE according to the solar wind

VX component and the XGSE position of Wind using to t = (XWIND−14RE)/VX , a cruder

form of how OMNI time-shifts L1 observations. Note that, just as with OMNI estimates,

time-shifts for crossings occurring far out along the flanks can involve greater errors due to

the greater distance. A table of the crossing counts for the original dataset, the time span

filtered dataset, and for NaNs being removed is given by Table 3.4.
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All Crossings Together

Merging all previously mentioned cleaned crossing datasets results in 15,123 bow shock

crossings. All but one crossing has a radius ≤ 50RE with this one crossing belonging to

Magion-4 and possessing a very large radius of 106.8 RE . We remove this single crossing,

reducing the dataset to 15,122 points. Henceforth, when there is reference to the “original”

crossing dataset, we shall be referring to this one.

Last, our intent is to use a physics-informed neural network approach to the construction

of a bow shock model. Neural networks can struggle with performing regression on data that

correspond to extrema for one of the training features or ranges not seen during training. To

deal with this, we take a rather blunt approach of removing the first and last 0.5 percentiles

of data (inclusive) for the plasma beta, magnetosonic mach number, dynamic pressure, and

BZ (that is, the bottom 0.5% and top 0.5% of each of these features is removed) of the

upstream estimates. This is not applied to the magnetic cone and clock angles as they are

periodic features. This removal leaves 14,664 crossings. A table of the resulting crossings per

spacecraft is seen in Table 3.5 and histograms of the modified features are shown in Figure

3-3. Any remaining modifications of the data and how it is prepared for the development

of a bow shock model will be covered in Chapter 8, after the development and validation of

the unsupervised classifier.
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Figure 3-3: Histograms of the magnetosonic mach number, plasma beta (in log10 scale),
dynamic pressure (in nPa), and BZ (in nT). The min and max values along the x axis
for each figure indicate that data exist with those extreme values but are very rare in the
original dataset. Note that for the plasma beta, this implies points with β = 0.01 and 1000
in linear scaling. Applying the 1% extrema removal results in truncating the data along the
dashed black lines. These limits are [2.60, 9.10] for the magnetosonic mach number, [0.11,
43.38] for the plasma beta in linear scale ([-0.96, 1.64] in log10 scale), [0.64, 18.24] for the
dynamic pressure, and [-13.33, 13.60] for BZ .
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Original* 1% Extrema Removed

THEMIS-A 191 186

B 155 150

C 243 240

D 324 319

E 260 253

MMS-1 306 303

2 307 303

3 310 304

4 131 129

Cluster-1 2,476 2,425

3 1,848 1,819

Imp 8 6,937 6,623

Geotail 810 799

Magion-4 824 811

Total 15,122 14,664

Table 3.5: * Note that we have removed the single 100+ RE crossing due to Magion-4 here.
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Chapter 4

Unsupervised Classifier Data

Preparation

The eight variables V, B, n, and T , hereafter referred to as features, of our dataset do not

possess enough variance for many unsupervised methods to sufficiently separate the regions.

It is very common within machine learning to engineer derived features from the original in

hopes of capturing non-linear relationships (Horn et al. [2020]) because what is non-linearly

separable in some space might become linearly separable in a higher dimensional space

(see the example in Figure 4-1). To this end, we include the ion speed V , the magnetic

field magnitude B, and the ion momentum density, mom = n V (with ion mass set to

1), as five additional features, giving us a total of 13 features. The addition of the ion

momentum density vector is to help better separate the magnetosheath from the solar wind

and magnetosphere as it acts as a transition region between them.

Most of the features have ranges over a few orders of magnitude whereas the density,

temperature, and momentum density components cover more than several. We convert the

density and temperature to log10 scale, but the same cannot be done for the momentum

density due to the negative values. This is circumvented by transforming the momentum

density using the log10 of the absolute values of their components instead. After, these data

still possess uneven ranges that can impact the performance of the dimensionality reduction
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Figure 4-1: A basic example demonstrating the importance of feature engineering. Two
noisy concentric circles (plotted in the left figure with different markers) cannot be separated
from each other linearly according to their x and y positions alone. Creating the feature
r =

√
x2 + y2 and plotting (x,y,r) shows a correlation of one circle with higher values of r.

This is seen more clearly in a plot of (x,r) in the right figure where a line can separate the
circles to high accuracy.

and clustering methods we will use. To avoid feature bias, we rescale our training data using

min-max normalization such that the new minimum and maximum of each feature is 0 and

1, respectively. The distributions of this rescaled training data is shown in Figure 4-2.

Non-negligible feature correlation is certain given our choice of features and this is

evident in the correlation heatmap of Figure 4-3. The high number of correlated features

means that direct clustering methods would be biased in the favour of these correlated

components. Further still, the dimensionality can make some methods computationally

expensive or cause them to find poor solutions due to the curse of dimensionality. The

implication of the latter here is that distances between points will become smaller as the

dimensionality increases, reducing the quality of clustering solutions. For data that does

not possess significant outliers or that has been meticulously cleaned, the loss in quality

of these solutions may be small, but it can become an issue for noisy data, especially data

that are observations. These issues will be addressed in the following chapter so that an

accurate unsupervised classifier can be constructed.
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Figure 4-2: Violin plots representing the distributions of input features of our min-max
scaled training set. The violin plots here show the kernel density estimate (KDE) as the
width, the range of the estimate as a thin vertical grey bar (for example, all features here
have this thin vertical grey bar reaching from 0 to 1), the interquartile range as a thick
vertical black bar, and the median as a white dot. The KDE for each variable is scaled
according to the width so that the distributions are more visible.

50



BX BY BZ VX VY VZ B V T n
m

om
_X

m
om

_Y
m

om
_Z

BX
BY
BZ
VX
VY
VZ

B
V
T
n

mom_X
mom_Y
mom_Z

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 4-3: A heatmap of the correlations between variables in the min-max rescaled train-
ing set. The plot is symmetric across the diagonal. It is to be interpreted as showing the
correlation of each feature with every other feature in the training set, e.g. correlation(
log10(n), log10(T) ) ∼ -0.6, or the log10 of the density is moderately negatively correlated
with log10 of the temperature. There is a visible number of variable pairs with large mag-
nitude in correlation (the bright or dark colored boxes in the off-diagonal). Also apparent
is the absence of correlation of BX and BY with all other variables - even with B. This
is because the distributions of BX and BY are symmetric around 0, which is visible in
Figure 3-2. The V X and V Y components have correlation with V because large speeds
(>350 km/s) are often going to be associated with solar wind, which generally possess large
negative magnitudes in VX and slightly positive VY, on average (∼30 km/s), due to the
angle that the solar wind arrives at the Earth. Lastly, note the positive correlation between
VX and T. This is legitimate as the lowest values of VX occur in the solar wind, which is
characterized by the lowest temperatures; more moderate values of VX and T occur in the
magnetosheath; the largest (read, most positive) values of VX occur in the magnetosphere,
which also possesses the largest temperatures.
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Chapter 5

Building the Unsupervised

Classifier Pipeline

The unsupervised classifier we create requires multiple methods to function. We outline here

the full pipeline of methods that allow us to take our 13-dimensional data and classify it

into magnetosheath, magnetosphere, and solar wind. Analyses and validation of the model

results are carried out in the subsequent chapter. The methods covered here include PCA,

SOMs, K-Means, and Hierarchical Agglomerative Clustering.

5.1 Reducing Dimensionality with PCA

We possess a dataset of thirteen features, some of which have correlations with each other as

seen in Figure 4-3. Applying clustering techniques to this data outright could create biased

solutions due to both the presence of these correlations and the curse of dimensionality

making it hard to resolve outliers correctly. We rectify this by applying PCA to the data

to recover uncorrelated components that represent the majority of the variance of the data.

The decomposition of the data is seen in Figure 5-1 and shows two subplots, one describing

the proportions of variance associated with each component (left) and the other showing

the resulting biplot of the data (right). We choose a 90% variance cutoff as our threshold,

meaning that we extract six components from the decomposition. The biplot shows that
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the left, top right, and bottom right areas are associated with higher temperature, higher

density, and higher speeds, respectively, thus making it likely that these clusters are the

magnetosphere, magnetosheath, and solar wind populations.

While this decomposition addresses both the correlations and dimensionality of the data,

there is still the matter of a large training size after the PCA transform. This size can be

reduced by simply randomly selecting fewer points, but this will only trade variance for

sample size. Choosing enough points to represent a similar amount of variance will still

require a large population size. In the next section, we will use a Self-Organizing Map

(SOM) to create distinct points that can act as “representatives” of their local distributions

such that their amalgamation reflects the distribution of the training set.

5.2 Vector Quantization via Self Organizing Maps

5.2.1 Implementation

There are several open-source python packages implementing SOMs available. The most

common is minisom (Vettigli [2018]), which uses a vectorized design to speed up computa-

tions. For large datasets or network sizes, the time to completion may still be quite long.

Traditionally, training an SOM has been a computationally expensive process for two rea-

sons: The network adapts to one point at a time, and it is fairly common that multiple

trainings are done. The latter occurs because SOM initialization and training are done

stochastically and there is a large number of hyperparameter choices available (the number

of iterations, the network size, the decay function, the neighborhood function, the initial

and final learning rate and neighborhood size, etc). Since the network with the lowest

quantization error is usually selected as the best fitting, this significantly increases the total

amount of time needed to get a complete and robust model.

The one-at-a-time training constraint is resolved by using SOMs that train over batch-
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Figure 5-1: Left: The normalized eigenvalues from the PCA decomposition are plotted in
descending order as the solid blue line. The cumulative sum of these normalized eigenvalues
is plotted as the dashed black line. We choose to select a number of components representing
at least 90% of the variance (the horizontal black line), so 6 components are chosen that
represent 93% (the vertical dashed black line). Right: A bivariate histogram of the training
data projected onto the first two principal components, representing 76% variance. It
is evident from the first two components that several clusters are present in the data.
The arrows plotted here are the loadings for our features across the first two principal
components. The length of an arrow represents the influence that feature had for the PCA
projection along that direction. All arrow lengths are normalized to the longest arrow, that
of the B feature. From the plot, the temperature feature, T, significantly influenced the 0th

component but barely for the 1st and points to the cluster on the left. This means that
that cluster is likely to correspond to higher temperatures than the data on the right. The
density, n, roughly equally contributed to both components and indicates that the top right
region is related to higher densities and by its antiparallel direction, the cluster on the left
is largely associated with lower densities. Since VX points to the top left and V to the
bottom right, the bottom right region is related to data with high speeds and large negative
values of VX. The BX, BY, VY, and VZ features are clustered at the origin, indicating
that they did not influence the first two components (although they may have impacted
the higher order components). Overall, we can surmise from this plot alone that the left,
top right, and bottom right areas are associated with higher temperature, higher density,
and higher speeds, respectively. Thus, it is likely that these clusters are the magnetosphere,
magnetosheath, and solar wind populations.
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updates. These usually involve computing weighted averages of the neighborhood values

across a batch of samples. This approach is taken by two popular python packages Somoclu

(Wittek et al. [2017]) and XPySom (Mancini et al. [2020]) and speed-up on CPU resources

alone can be close to a factor of 100, sometimes greater. We have used the XPySom package

for our results.

5.2.2 Hyperparameter Optimization and Training

To expedite the process of finding the best fitting SOM with the most appropriate set of

hyperparameters, we create a micro training set. First, we again min-max normalize the

PCA-projected training data in order to avoid bias to any particular feature. Next, we run

K-Means 100 times to resolve 10,000 clusters with a K-Means++ initialization method and

select the optimal run based on minimal inertia. This initialization method makes better

choices for cluster centroids by weighting data in proportion to their square distance from

the previously created centroid. Then for each centroid, the closest point in the training

data is extracted, and the resulting 10,000 points form the micro training set. The remaining

points in the training dataset are referred to as the macro training set with a size of 472k.

We consider a number of different SOM hyperparameters and that each SOM will be

trained on the micro training set and validated on the macro training set. The maps are

validated in this way because the macro set will contain a larger number of outliers, and

given the noise evident in the biplot of Figure 5-1, resolving these outliers correctly will

be crucial. The hyperparameters of the map with the lowest value for our loss function

will be retained and a final SOM will be trained using these hyperparameters on the macro

training set. We define our loss function to be

L = Q ∗ (
nxny

(nx)max(ny)max
+
max{nx, ny}
min{nx, ny}

). (5.1)
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where Q is the quantization error of the SOM, nx and ny are the dimensions of the 2D

node grid, and (nx)max and (ny)max are the maximum values permitted for the x and y

dimensions. The max{nx, ny}/min{nx, ny} term penalizes non-square networks and will

only allow for non-square maps should they provide a sizably lower quantization error.

It should be noted that the use of a custom loss function for SOM validation is critical for

our purposes. With the number of training iterations and training data set held constant,

increasing the map size will generally reduce the quantization error for many choices of

hyperparameters. A larger map size may better represent the training data, and in many

cases even the test data, than a smaller map, but a larger number of nodes and their

distributions may be suboptimal for clustering methods that will fit to these nodes. This

can be loosely seen as a form of overfitting, but not in the sense of a model not generalizing

well to unseen data. To illustrate this concept by example, consider training a “small” map

on a large dataset containing heterogeneous groups whose distributions are somewhat (but

not extremely) non-convex. One might find that the distributions of the nodes mapping

to these different groups are approximately spherically separable because there are few to

no nodes mapping to outliers. This would be a good motivation to use K-Means to cluster

the nodes for such maps. However, as the map size is increased, the node distributions

will begin to better resemble the more complicated, original distribution of the data, which

contains harder-to-resolve non-convex distributions that clustering algorithms like K-Means

or Gaussian Mixture Models may struggle to resolve. For another example of defining a

custom loss function for SOMs in space physics applications, see the loss function defined

in Amaya et al. [2020].

The python-based optimization library Optuna (Akiba et al. [2019]) is used to choose

hyperparameter values. The training of each SOM on the micro training set is referred to as

a trial. Optuna offers a variety of samplers to generate hyperparameters choices, and we use
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the Tree-structured Parzen Estimator (TPE) with independent sampling as the sampler. It

generates hyperparameter choices by fitting two sets of Gaussian Mixture Models (GMM)

per trial, one set for the better performing trials, l(x), and another for the remaining, g(x).

Each set involves fitting a GMM for each hyperparameter x and the hyperparameter value

selected is that which maximizes the ratio of density estimates l(x)/g(x). Maximizing this

ratio is consistent with choosing a hyperparameter that is simultaneously most likely to be

generated by l(x) (the “good” models) and least so by g(x) (the “poor” models).

For our optimization, we considered the following hyperparameters. The number of

nodes for the SOM grid nx and ny, the initial learning rate α, the initial neighborhood size

σ, the neighborhood function H, and the decay function D. We have fixed the number of

training epochs to be 50, the final learning rate and neighborhood size to be 0.01, and the

maximum nx and ny dimensions to be 30. The values the hyperparameters are permitted

to take are enumerated below:

1. 5 ≤ nx, ny ≤ 30

2. 1 ≤ σ ≤ √nxny

3. 0.1 ≤ α ≤ 1

4. D: {linear, exponential}

5. H: {Gaussian, Ricker}

5.2.3 SOM Results

After 500 trials, the best hyperparameter options are (nx, ny) = (14, 14), σ = 5.518, α =

0.843, D = exponential, and H = Ricker. We train a SOM with these hyperparameters on

the macro training set which completes in 7 minutes. The resulting SOM has a quantization

error of 0.0702 and 0.0703 on the macro training and test sets. The loss function rounds to
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0.0855 and 0.0856. With a Intel Xeon 2.90GHz E5-2690 (32 cores, 64 threads) CPU and 64

GB of RAM available, the entire process of hyperparameter optimization and final model

training takes approximately 3 hours.

While the SOM we have trained has a good quantization error, there are visualization

techniques we can use to further assess how well it represents the data. Since the goal of

a SOM is to give a vector-quantized representation of the data, one simple approach is to

create plots of the data itself with the SOM node positions overlaid. If it is an effective

representation, it should roughly map to positions of high data density, both in scatter plots

and histogram marginals. We show pairplots over the first three min-max scaled principal

components of the test set in Figure 5-2. When scaling up the marginal histograms of the

node positions to that of the marginal histograms of the test set, there is good agreement

over the 0th and 2nd components. The 1st component shows partial agreement with the

node histogram, only somewhat capturing the peak in density between 0.3 and 0.4

Another method uses the ordered nature of the SOM to create a heatmap of distances

between the nodes. Since the nodes of a SOM have an ordered topological relationship, we

can compute the average distance between a node and its immediate neighbors and create

a heatmap of these average neighbor distances. The 2D matrix of these values is referred

to as the U-Matrix. The U-Matrix for the test data is shown in the top left of Figure 5-3.

Moreover, since each data point can be uniquely associated with its corresponding BMU in

the SOM, we can then compute the average of all data per node. This average value per

node can be used to create heatmaps of the SOM for any feature from the data, as seen in

the remaining plots of Figure 5-3.
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Figure 5-2: Pairplots over the first three min-max normalized principal components (83%
variance) of the test set. The off diagonal plots are bivariate histograms for the test data in
greyscale. Scatter plots of the SOM node position are plotted in red on top of the bivariate
histograms. The diagonal plots are the marginal distributions where the black line is the
test data distributed over 100 bins. The SOM node positions are simultaneously binned
but at a smaller resolution of 25 bins. The nodes generally match the histograms of the 0th

and 2nd components with a dip noticeable in the nodes histogram of the 1st component.
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Figure 5-3: 2D heatmaps of the test data as seen through the SOM. In the U-matrix, plotted
in the top left, nodes are coloured according to their distance to the nearest neighbours: the
lighter nodes are more similar to the neighbours than darker nodes. Note that neighbors
here is defined in the square topological sense; nodes in the corners only have two neighbors,
nodes along the rest of the perimeter have three neighbors, and all other nodes have four
neighbors. The fewer neighbors among those on the perimeter means that there will usually
be less variance among them such that the perimeter nodes have a lower (lighter) U-matrix
value. A region of dark grey nodes partitions the U-Matrix into two areas of lighter color
in the top left and bottom right. This means that there are two relatively homogeneous
groups of nodes. To interpret what groups of data these nodes represent, we can look at the
feature maps in the remaining plots. In these plots, the average feature value per node is
depicted as a heatmap. It is apparent from the feature maps that the group of nodes on the
left side of the U-Matrix correspond to regions of low density and high temperature. The
nodes to the right correspond to moderate-to-high densities, low-to-moderate temperatures
and negative values of VX.
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5.3 Hierarchical Clustering of the SOM

Applying direct clustering methods caused difficulties involving size, dimensionality, and

multicollinearity. We resolved the latter two using PCA and have addressed the first by

training a SOM to act as a further discretized representation of the data. With a SOM

representation, we now can consider a much wider choice of methods to cluster the data as

training size is no longer a constraining factor. Once a clustering method is trained, it can

separate the SOM nodes automatically, classifying which nodes belong to which cluster.

These node classifications can then be propagated to the data that the nodes represent,

i.e. if a node A is assigned to cluster 1, then all data for which node A is the BMU will

be assigned to cluster 1. We use an agglomerative, or “bottom-up,” form of hierarchical

clustering as implemented in the scikit-learn package with a Ward linkage in order to focus

on separating clusters based on homogeneity. The entire model pipeline, including the

approach used for hyperparameter optimization of the SOM, is shown in Figure 5-4.
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62



Chapter 6

GMClustering

In this chapter, we validate the unsupervised classifier, called Global-Magnetosphere-Clustering,

or GMClustering, that we have constructed.

6.1 Model Results

The dendrogram of the hierarchical clustering of the SOM nodes and the resulting cluster

assignments are shown in Figure 6-1. From the dendrogram, we make cluster classifications

using a distance threshold of 1.65 and propagate the cluster assignments of the SOM nodes

to the test data. The number of data points in the test set mapped per node is also

shown in the same figure. Histograms of the classifications for each cluster are shown

in Figure 6-2. These clusters were obtained in an unsupervised manner and a posteriori

analysis shows that they correspond with specific regions, those being the magnetosphere,

magnetosheath, and solar wind. The clustering of the SOM nodes in PCA space is shown in

Figure 6-3. We previously made conjectures as to what portions of the biplot from Figure

5-1 are associated with the solar wind, magnetosheath, and magnetosphere, and they are

confirmed with the clustering depicted. In both the (0,1) and (0,2) plots of Figure 6-3, the

magnetosheath cluster has overlap with both the magnetosphere and the solar wind clusters

but the magnetosphere and solar wind clusters have little overlap with each other, as one can

expect from the physics of the magnetospheric system. Higher order components possess
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less variance and show considerable overlap as seen in the (1,2) plot. This is a consequence of

using PCA for dimensionality reduction: The first PCA components will generally capture

the majority of the variance and subsequent components will be less significant.

In GSE coordinates, the solar wind tends to be in the sunward (here, rightward) di-

rection, the magnetosphere in the tailward (leftward) direction, and the magnetosheath is

a curved transition region between the two. The histograms of log10 density and log10

Alfvén Mach number of Figure 6-2 reflect this and show the clustering is very effective in

separating supersonic, moderate density plasma (solar wind) from shocked, dense plasma

(magnetosheath) and very subsonic, thin plasma (magnetosphere). Note that since the

Alfvén Mach number is plotted in log10 scale, the supersonic to subsonic transition occurs

as a change in sign. Overlap between these distributions can certainly occur and this is

reflected in their histograms. Incorrect classifications are also visible in Figure 6-2, such

as scattered magnetosheath and solar wind classifications occurring in the nightside at -20

RE ≤ YGSE ≤ 20 RE , a swath of magnetosheath classifications at -10 RE ≤ XGSE ≤ -5

RE , and magnetosphere classifications well out into the dayside. In analyzing time series,

these are generally spurious and rarely part of consecutive misclassifications. We show two

sample classifications of time series, one for THEMIS-C where the classification is exactly

correct (Figure 6-4) and one where the majority of classifications are correct but suffer

from spurious misclassifications (Figure 6-5). Analyzing when MMS 1 is in the solar wind

in Figure 6-5, it’s apparent that the magnetosheath-misclassifications correspond to higher

temperature and lower absolute value of the velocity, as in the magnetosheath. When MMS

1 is in the magnetosheath, the solar wind-misclassifications correspond to higher absolute

value in velocity and the magnetosphere-misclassifications correspond to lower density, again

consistent with the characteristics of the region to which the measurements are incorrectly

assigned.
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Figure 6-1: Top Right: A dendrogram of the clustered nodes using a Ward linkage.
Separate clusters only up to the five most recent mergings are shown. We chose a cutoff
sum of square deviations from the mean (SSD) of 1.65 to extract three clusters, as shown by
the horizontal dashed black line. The number of times the line intersects with the vertical
lines of clusters is the number of clusters recovered. The cluster assignments are visualized
in the top left image. Top Left: Cluster assignments of the SOM nodes shown on the 2D
node grid. The region of low density and high temperature observed in Figure 5-3 has been
assigned to cluster 0 (blue), the region of low VX is largely cluster 2 (green) and the region
of high density is largely cluster 1 (orange). The color scheme used to represent the different
clusters will remain the same. Bottom Row: For each cluster, the number of test points
per node is shown. Note that the magnetosphere-classified nodes (10,6), (10,5), and (10,4)
within the magnetosheath cluster contain few hits and the magnetosheath-classified node
(6,2) within the magnetosphere cluster also contains few hits. However, the magnetosheath
nodes (12,12) and (8,12) within the solar wind cluster are responsible for a sizable number
of hits.
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Figure 6-2: Top / univariate histograms: Histograms of the log10 density and log10
Alfvén Mach number. The histogram over the entire test set is in black and the histograms
of the three clusters of the test set are represented in color. The magnetosphere is in blue
(cluster 0), the magnetosheath is in orange (cluster 1) and the solar wind is in green (cluster
2). Bottom / bivariate histograms: (XGSE [RE ], YGSE [RE ]) bivariate histograms of
cluster occupancy where the sun is on the right. The leftmost plot shows the histogram
over the entire test set and each other plot shows an occupancy histogram for a particular
cluster of the test set. The cluster color scheme used is the same as in Figure 6-1. A
darker shade of color indicates a higher count in the bivariate bin. The solid line is a Shue
magnetopause and the dashed line is a Chao bow shock. The parameters for these models
are BZ = 0.15 nT, Dp = 2 nPa, MMS = 6, and β = 2.
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Figure 6-3: Cluster assignments of SOM nodes over the first three min-max normalized prin-
cipal components of the test set. Comparing the plot of the (0,1) component-transformed
data (center-left plot) to the biplot over the first two principal components in Figure 5-1,
we observe that the region on the left is the magnetosphere, the upper right is the mag-
netosheath, and the lower right is the solar wind. The marginal histograms of all clusters
are shown along the diagonal using the same bin ratio (100 bins for data and 25 for SOM
nodes) as in Figure 5-2.
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Figure 6-4: THEMIS-C measurements from 2008-07-05 to 2008-07-06. The temperature
and density are in log10 scale. The classifications are shown in the bottom plot with the
same cluster color scheme as Figure 6-1. The model successfully classifies the solar wind,
magnetosphere, and magnetosheath measurements according to our visual verification. No-
ticeably, it also catches the “blip” when THEMIS-C is briefly in the magnetosheath before
again crossing the bow shock and going back into the magnetosheath at 14:00 UT.
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Figure 6-5: MMS 1 measurements from 2018-12-10. The plot structure is the same as Figure
6-4. MMS 1 crosses the bow shock at about 8:00 UT and the magnetopause shortly after
13:00. The majority of the classifications prior to crossing the bow shock are solar wind,
but there are a number of incorrect and spurious magnetosheath classifications that occur
with sharp increases in VX (as indicated by the black arrows) as well as one magnetosphere
classification around 10:30 UT. After 8:00 UT, the majority of classifications changes to
magnetosheath with rarer solar wind and magnetosphere classifications occurring. In the
interval when MMS 1 is in the magnetosheath, magnetosphere misclassifications correspond
with sudden drops in density measurements.
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In Figure 6-1, it is evident that the different clusters are largely segregated spatially

in the node grid but exceptions are present. There are multiple nodes that are at best

somewhat adjacent to the remainder of their cluster. Notably, the magnetosheath cluster

has nodes at grid positions (12,12) and (8,12) that are surrounded by the solar wind cluster.

The magnetosheath cluster also has a node that is surrounded by the magnetosphere cluster

at (6,2) and a vertical streak of magnetosphere-classified nodes starting at (10,4). Results

like this are not entirely unexpected as we are analyzing observations and the magnetosheath

acts as a transition region between the magnetosphere and solar wind. We analyze the data

that map to these nodes in detail in Section 6.3.

6.2 Comparison with Olshevsky et al. [2021]

Ours is not the only model that has attempted to classify spacecraft observations into

different plasma regions. Olshevsky et al. [2021] used a convolutional neural network trained

on the ion energy distributions of MMS to classify them as magnetosphere, magnetosheath,

pristine solar wind, or ion foreshock and Nguyen et al. [2022] used a gradient-boosted

decision tree trained on magnetic field and ion moments of a variety of spacecraft to classify

them as magnetosphere, magnetosheath, and solar wind classes. Breuillard et al. [2020]

also used a convolutional neural network on MMS measurements of the magnetic field

components B and magnitude B, the ion velocity components V and magnitude V, the ion

density, and the parallel, perpendicular, and total ion temperatures to classify them into

pristine solar wind, ion foreshock, bow shock, magnetosheath, magnetopause, boundary

layer, magnetosphere, plasma sheet, plasma sheet boundary layer, and lobe.

Olshevsky et al. [2021] created a labeled dataset and has comparable classes to our

model, so we have made comparisons with their model and data. They curated two month’s

worth of MMS1 data, covering November and December 2017 to the total of 469k points and
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created two models. One of their models was trained on the November 2017 data and tested

against the December 2017 data and the training and testing were reversed for the other.

They did not use the full datasets for training and instead used about ∼25k points each

for November and December, making sure to evenly sample from the four classes to avoid

class imbalances. We use their better performing model, which was trained on December

2017 and tested against November 2017, as a comparison. We prepared both magnetic

field and ion observations (averaging the magnetic field measurements to the latency of the

ion observations at 4.5 sec resolution) and assigned their labels to our prepared dataset of

467k points, discarding the 2k unrecognized points. Since their model relied on correctly

classifying the ion sky maps, they anticipated that complex mixing of distributions could

occur at the magnetopause and bow shock, and so any data that indicates distribution

mixing was assigned to the class “Unknown,” comprising about 15% of their dataset. We

mask these points out when comparing the accuracy of these models.

As explored in a previous section, the hierarchical capability of our model means that we

can further derive sub-classes from our original classification. To directly compare against

the model of Olshevsky et al. [2021], we will unpack our solar wind cluster into two sub-

clusters and regard one as the pristine solar wind and the other as the ion foreshock. To

compare model performance in our 3-class classification, we fold together the ion foreshock

and pristine solar wind labels collectively as solar wind. Confusion matrices of the classifi-

cations of both models in both cases and their overall accuracy for each are shown in Figure

6-6. For magnetosphere / magnetosheath / solar wind classification, our model’s overall

accuracy (99.41%) is approximately equal to theirs (99.39%) but the per-class accuracy

varies. Our model’s accuracy for magnetosphere and magnetosheath predictions is quite

high at 100% and 99.8% but our solar wind classification is only 99.1%. The false negatives

of the solar wind and magnetosheath classes are almost entirely magnetosheath and mag-
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netosphere labeled data at 0.9% and 0.02%, respectively. Their model’s most accurately

classified category is solar wind at 99.8% followed by magnetosphere and magnetosheath at

99.1% and 98.6% and the amount of solar wind false positives is 1.4%. For magnetosphere

/ magnetosheath / ion foreshock / pristine solar wind classification, our model’s accuracy is

only 86.7% with a per-class accuracy of 83.0% and 76.4% for the ion foreshock and pristine

solar wind. It can also be seen that the solar wind-labeled data that our model misclas-

sified as magnetosheath almost always corresponded to ion foreshock labels. Their model

certainly outperforms here, correctly classifying the ion foreshock and pristine solar wind

classes at 92.4% and 98.2% accuracy. This is not surprising as they used a supervised 3D

convolutional neural network with a much more diverse dataset of 32x16x32 features and

our model is an unsupervised neural network using data with only 13 features.

Rather, it should be expressed that our model is able to achieve a similar 3-class accuracy

compared to a much more robust model. Moreover, the most significant advantage of this

model is that it utilizes a SOM’s ability to analyze data using feature maps in which unique

data can be uncovered using either a “node-to-data” or “data-to-node” approach. In the

next chapter, we will outline the applications of the model.

6.3 Investigating Topologically Distinct Nodes

The clustering of the nodes in the SOM is largely separated, but the topological overlap

of classified nodes merits further investigation to reveal if the classification is correct or

improper. We analyze the anomalous node positions in the SOM, namely the separated

magnetosheath nodes at positions (12,12), (8,12), and (6,2) as well as the vertical streak of

magnetosphere nodes at positions (10,6), (10,5), and (10,4).

The node at (12,12) has the largest U-Matrix value seen in Figure 5-3, indicating that

it is farther from its neighbors than all other nodes in the SOM. This is not surprising since
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Figure 6-6: Confusion matrices for our model (top row) and the model of Olshevsky et al.
[2021] (bottom row) against the labeled dataset of Olshevsky et al. [2021] for magnetosphere
(MSP), magnetosheath (MSH), and solar wind (SW) classifications (left column) and for
magnetosphere, magnetosheath, ion foreshock (IF), and pristine solar wind (PSW) (right
column). Note that about 15% of their dataset was labeled as being “Unknown” and these
comparisons are done using only the remaining 85%.
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Figure 6-7: The VX, VY, log10 density, and log10 temperature empirical probability dis-
tributions of all magnetosheath-classified test data are plotted along the top row in blue.
Similar features but for all solar wind-classified test data are plotted along the bottom row,
also in blue. The empirical probability distribution of all test data that maps to node
(12,12) is plotted in all plots as the orange distribution. The probability distributions are
plotted here because of the large size differences between the number of magnetosheath
observations (2.17 million) and solar wind observations (883k) of the test set and number
of data mapping to node (12,12) (33k).

it is classified as a magnetosheath node and is surrounded by solar wind-classified nodes.

There are about 2.18 million magnetosheath points in the test set and 34k (1.5%) of them

map to this node. Categorizing this node’s data by spacecraft, we find that almost all

are MMS observations with only about 100 belonging to THEMIS. We plot the empirical

probability distributions of all magnetosheath and solar wind measurements in the test set

in Figure 6-7 as well as the data belonging to this node for comparison. From the figure,

we can see that there is much more overlap with the distributions of node (12,12) with the

magnetosheath observations than that of solar wind, indicating that although the node’s

position in the grid is unusual, it corresponds well with magnetosheath observations.

Node (6,2) is another topologically isolated magnetosheath node that also possesses a

very high U-Matrix value, except that this one is surrounded by magnetosphere-classified

nodes. It is responsible for only about 7.7k (0.35%) points of the magnetosheath-classified

data of the test set and is almost evenly split by spacecraft with 56% points belonging to
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Figure 6-8: The VX, B, log10 density, and log10 temperature empirical probability distribu-
tions of all magnetosheath-classified test data are plotted along the top row in blue. Similar
features but for all magnetosphere-classified test data are plotted along the bottom row,
also in blue. The empirical probability distribution of the 7.7k magnetosheath-classified ob-
servations of node (6,2) are plotted in orange for each feature. The VX, log10 density, and
log10 temperature distributions for this node all align more with the magnetosheath data
than that classified as magnetosphere whereas the B distribution reflects high magnitude
observations. Overall, this node has captured data with magnetosheath characteristics in
velocity, density, and temperature, but also possessing high field magnitudes.

THEMIS and 44% to MMS. The empirical probability distributions of all magnetosheath-

classified and magnetosphere-classified data in the test set are plotted alongside the obser-

vations mapped to this node in Figure 6-8 and multiple distinctions can immediately be

made: data mapping to this node exhibit more magnetosheath characteristics in velocity,

density, and temperature and also possess high magnetic field magnitudes. It seems correct

that this node is classified as magnetosheath and the sparsity of points mapping to this

node is understood in the context that magnetosheath observations possessing such large

magnetic field magnitudes is relatively rare. The large U-Matrix value is justified with these

observations.

Node (8,12) is diagonally topologically adjacent to the magnetosheath cluster but oth-

erwise surround by solar wind nodes. This SOM uses a square topology, so this diagonal

proximity does not factor into its U-Matrix value. It maps 68k (3.1%) points from the

magnetosheath-classified data of the test set with 11% being THEMIS observations and
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Figure 6-9: The VX, VY, log10 density and log10 temperature empirical probability dis-
tributions of all magnetosheath-classified data from the test set are plotted in blue along
the top row. The solar wind-classified test data are plotted in blue along the bottom. The
empirical probability distribution of the 68k magnetosheath-classified observations of node
(8,12) are plotted in orange for each feature. The log10 density and log10 temperature
distributions of the data from this node have sizeable mixing between both magnetosheath
and solar wind observations whereas the VX and VY distributions are more distinctly mag-
netosheath than solar wind.

89% being MMS. The VX, VY, log10 temperature, and log10 density empirical probabil-

ity distributions of the data mapping to this node are shown in Figure 6-9 alongside all

magnetosheath-classified and solar wind-classified test data. They indicate magnetosheath

observations with respect to the VX and VY distributions, but the log10 temperature and

log10 density distributions somewhat resemble a blend of solar wind and magnetosheath.

This lack of uniform agreement across these features can explain why node (8,12) is adjacent

to solar wind-classified nodes but the VX and VY distributions in particular indicate that

it is correct to classify it as a magnetosheath node.

Lastly, we analyze the magnetosphere-classified nodes at positions (10,6), (10,5) and

(10,4) that occur topologically within the magnetosheath cluster. Together, these nodes

account for 46k (0.75%) of the 6.1 million magnetosphere-classified points of the test set

with 76% being THEMIS observations and 24% belonging to MMS. Their VX, VY, log10

density and log10 temperature empirical probability distributions are plotted in Figure 6-
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10 along with the distributions of all three clusters in the test set. The data that map to

these nodes are unusual in that the node distributions do not fully overlap with all of the

distributions for any cluster. These data are classified as magnetosphere, but exist along the

extrema of all the magnetosphere distributions shown. They resemble the VY, log10 density,

and log10 temperature distributions of the solar wind, but the VX would be quite low for

solar wind. The VX, VY, and log10 temperature distributions match up well with the

magnetosheath distributions, but the log10 density is conspicuously low. Across all of the

clusters, the measurements have much more in common with magnetosheath observations

than magnetosphere or solar wind and are likely misclassifications. A time series of MMS1

observations containing many points that map to one of these nodes is shown in Figure

6-11. The magnetosheath plasma is of relatively low density, reflective of how these nodes

are misclassified as magnetosphere. These nodes are responsible for 0.50% of the total test

set.

Overall, the magnetosheath cluster has nodes in several aberrant positions in the SOM

grid in which they were surrounded by nodes belonging to other clusters. Investigating these

nodes in detail, however, has shown that the data correspond well with magnetosheath

observations and are deserving of being classified as such. It was also seen that three

magnetosphere-classified nodes are likely misclassified and should be recognized as mag-

netosheath. These three nodes contain few points (46k points, or 0.50% of the test set),

together containing slightly less than the average number of test points per node (47k), and

so do not significantly impact the strength of the results. Furthermore, it should be noted

that such a misclassification occurred between the magnetosheath and the magnetosphere

and that the separation between solar wind and magnetosphere plasma is quite distinct in

the map.
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Figure 6-10: The VX, VY, log10 density and log10 temperature empirical probability dis-
tributions of all magnetosheath-, magnetosphere-, and solar wind-classified test data are
plotted in blue along the top, middle, and bottom rows, respectively. All test data that
map to nodes (10,6), (10,5) and (10,4) are collectively plotted here as the orange empirical
probability distributions. These data are anomalous and exhibit characteristics found in all
magnetosheath, magnetosphere, and solar wind observations. The VY, log10 density, and
log10 temperature align well with the solar wind distributions, but the VX distribution is
far too low. The VX, VY, and log10 temperature distributions correspond with magne-
tosheath observations, but there are very low densities. All of these distributions seem to
have the least in common with the magnetosphere cluster, being along the extrema in all
cases.
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Figure 6-11: MMS 1 measurements from midnight to 13:00 UT on 2020-12-04. The plot
structure is the same as Figure 6-4. The transparent vertical blue lines indicate that the
measurement at that time maps to the (10,6), (10,5), or (10,4) node. MMS1 is measuring
low-density magnetosheath plasma from midnight to 8:30 UT and from 10:00 to 11:00 UT.
473 points (84.3%) of the magnetosphere-classified data in the midnight to 11:00 UT interval
map to one of these nodes. These 473 points are also almost 1% of all data that map to
these nodes.
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Chapter 7

GMClustering Applications

7.1 Subpopulation Analysis

We show in brief the capability of subpopulation analysis with this clustering method. Since

we have used a hierarchical method to cluster the SOM nodes, we can pick any cluster and

investigate the previously merged clusters that compose it. We “unpack” the magneto-

sphere cluster in Figures 7-1 and 7-2 to show how distinct magnetospheric populations were

collectively recognized as the magnetosphere. From the histograms, we see that the feature

that changes most clearly between the two clusters is the Alfvénic Mach number. Note that

the subclusters of the magnetosphere in Figure 7-1 are not as evenly topologically sepa-

rated like the original clustering solution seen in Figure 6-1. This is not surprising given

the large overlap in features between these subclusters seen in the univariate histograms of

Figure 7-2 and indicates that the variance between these two subclusters is less than the

variance between the magnetosphere, magnetosheath, and solar wind clusters, hence these

two subclusters appearing earlier in the merge order with a Ward linkage. In simpler terms,

it is easier to distinguish solar wind measurements from those of the magnetosheath or

magnetosphere than it is to separate magnetospheric populations by Alfvén Mach number.
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Figure 7-1: Like Figure 6-1 but only focusing on the magnetosphere cluster. Right: A
dendrogram showing the merge order of the magnetosphere cluster. This tree is a subset
of the dendrogram in Figure 6-1. We use a cutoff SSD of 1.2 and extract two clusters from
the magnetosphere cluster. Left: Subcluster assignments of the SOM nodes based on the
distance chosen in the dendrogram. The nodes that did not belong to the magnetosphere
cluster are masked out in black and assigned a label of -1. Looking back to the feature
maps in Figure 5-3, we can see that the blue cluster (0) is related to higher subsonic Alfvén
Mach number and the orange cluster (1) is related to lower subsonic Alfvén Mach number.

81



Figure 7-2: Like Figure 6-2, but analyzing only the magnetosphere cluster of the test set.
Bottom / bivariate histograms: The occupancy of cluster 0 (blue) and 1 (orange) are
plotted as bivariate histograms in (XGSE [RE ], YGSE [RE ]). They cover a similar region, but
cluster 1 is much less pronounced on the dayside. Top / univariate histograms: The
histograms of log10 density, BZ, and log10 Alfvén Mach number are plotted in black and
the cluster populations are plotted in their respective colors. As could be inferred from
Figure 5-3, cluster 0 is related to higher subsonic Alfvén Mach number and cluster 1 to
lower subsonic values.
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7.2 Derived Boundary Crossings

With a model that can classify when a measurement occurs in the magnetosphere, mag-

netosheath, or solar wind, we can study the time series of these classifications and infer

when a spacecraft has crossed the magnetopause or bow shock. To select crossings, we used

a moving window over the time series of classifications and find where the classification

changes from magnetosheath to solar wind or vice-versa. We considered such a change

in classification to be a crossing if all points half a window length before belong to one

cluster and all points half a window length ahead belong to the other. The changing time

resolution in the THEMIS data means that we need to consider different window lengths

between MMS and THEMIS observations. A window length of 20 minutes was used for

MMS to give up to 10 points per half window length and a window length of 40 minutes for

THEMIS to give up to 13 points per half window length when the ESA is in Fast-Survey

Mode (32 spins, 96 sec, going from the magnetosheath to the solar wind) or up to 3 points

per window when it is in Slow-Survey Mode (128 spins, 6.4 minutes, going from the solar

wind to the magnetosheath). A total of 3047 bow shock crossings and 5228 magnetopause

crossings are extracted using these parameters. Bivariate histograms of the (XGSE , YGSE)

positions of these crossings is depicted in Figure 7-3 alongside a Shue magnetopause (Shue

et al. [1998]) and Chao bow shock model (Chao et al. [2002]) and show good agreement

with respect to both.

For the bow shock crossings, we select the most recent solar wind point relative to the

time of crossing and see how they’re distributed in the SOM grid in Figure 7-4. When cross-

comparing these with the number of counts in the test set from Figure 6-1, we see that the

two most activated nodes of bow shock crossings are nodes (10,11) and (12,11). These nodes

are responsible for 21.7% of the crossings but only 11.5% (training + testing) of the solar

wind classifications. In the case of operational use of this model, a solar wind measurement
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Figure 7-3: Bivariate histograms of the magnetopause (left) and bow shock (right) crossings
in (XGSE [RE ], YGSE [RE ]). In both figures, the solid line is a Shue magnetopause with
parameters n = 8 #/cc, V = 400 km/s, and BZ = 0.15 nT and the dashed line is a Chao
bow shock with parameters BZ = 0.15 nT, Dp = 2 nPa, MMS = 6, and β = 2. Many of the
crossings are in line with expectations of magnetopause and bow shock positions although
a handful of errant crossings are evident, such as the magnetopause crossings at (X=-4,
Y=7) and (X=5, Y=25).

assigned to one of these nodes could be flagged as having an increased probability of being a

solar wind point adjacent to a bow shock crossing. Additionally, the node with the highest

count in the test set for solar wind points, node (11,12), has only a small number of bow

shock crossing points (6.2%) relative to the previous nodes.

We perform a similar analysis for the magnetosheath points relative to the magnetopause

crossings. The nodes with the highest number of counts of magnetosheath points associated

with magnetopause crossings are the nodes (9,5), (8,8), and (8,2). These are responsible

for 18.2% of the magnetopause crossings but only 3.0% of the magnetosheath classifications

(training + testing). The node with the largest number of magnetosheath points in the

test set, node (10,9) at 3.6%, only contains 15 magnetosheath points of the crossings, or

0.29% of the magnetopause crossings. These three nodes could be used to flag possible

magnetopause crossings.
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Figure 7-4: For each magnetopause (bow shock) crossing, we select the most recent magne-
tosheath (solar wind) point. Each point maps to, or “activates”, some node in the SOM. The
distribution of these counts is shown for the magnetosheath points for the magnetopause on
the left and the solar wind points for the bow shock on the right. For the magnetosheath
points, the most activated nodes are at positions (9,5), (8,8), and (8,2) and are together
responsible for 949 crossings. For the solar wind points, the most activated nodes are at
positions (10,11) and (12,11) and are responsible for 660 crossings.

7.3 Identifying Bursty Bulk Flows

Bursty Bulk Flows (BBF) are earthward-moving plasma flows in the magnetotail that are

often characterized by large speeds towards Earth (hence a large, positive VX component),

dipolarizations, depletions in density, and increases in temperature and are an important

process in the earthward transport of mass, energy, and magnetic flux in the magnetosphere

(Angelopoulos et al. [1994]). Detecting a dipolarization in magnetic field data alone is

inherently a time-dependent comparison, but detecting large VX components can be done

in a time-independent manner. Using the feature maps from Figure 5-3, we see that nodes

(0,11) and (3,12) are magnetosphere-classified nodes that have large average VX values

of almost 100 km/s. Thus we can use these nodes to identify possible BBFs. A dataset

of BBFs as observed by MMS from 2017 to 2021 was created by Pitkänen et al. [2023],

and they show two examples in their paper. We show that the BBF of their first example

corresponds to many activations of the (0,11) node in Figure 7-5. Not every activation
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corresponds to a BBF, but a rolling window method counting the number of activations

could be used to flag possible BBFs.

7.4 Identifying Hot Flow Anomalies and Foreshock Bubbles

Hot Flow Anomalies (HFA) and Foreshock Bubbles (FB) are transient phenomena that are

often observed in the ion foreshock. HFAs form from the interaction of a tangential discon-

tinuity with the bow shock and can result in particle energization, diminished density and

magnetic field, and flow turning sunward (Schwartz et al. [1985]; Omidi and Sibeck [2007]).

FBs are instead formed prior to this interaction but can possess similar characteristics of

low density and field strength and reduced VX / sunward flows (Omidi et al. [2010, 2020]).

These properties mean that these observations could be classified as magnetosheath or mag-

netosphere. Thus a simple way to identify possible HFAs and FBs using this model is to

track sequential solar wind-classified data and find gaps in the classifications. Liu et al.

[2022] compiled a list of observations of HFAs and FBs from MMS1 and THEMIS-A, 47 of

which are from November and December 2017 of MMS1. Using the same 4.5 sec resolution

dataset we previously prepared, we extract solar wind classification gaps of up to 2 minute

duration. Allowing an observation to be within up to 30 seconds of an identified gap, we

find that we can identify 39 of the 47 observations. An example interval of MMS1 data

containing seven HFA / FB observations is shown in Figure 7-6.
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Figure 7-5: MMS 1 measurements from 01:30 to 02:00 UT on 2021-08-15 at 4.5 sec resolu-
tion. The plot structure is the same as Figure 6-4. The vertical blue lines here denote the
magnetosphere-classified points that mapped to node (0,11). Pitkänen et al. [2023] identi-
fied the BBF interval as lasting from 01:39:56 to 01:42:38 UT, and 26 of the 36 points in
that 2 minutes 42 seconds interval map to node (0,11).
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Figure 7-6: MMS 1 measurements from 12:00 to 13:00 UT on 2017-12-18. The plot structure
is the same as Figure 6-4. The vertical purple lines here denote a HFA / FB time as recorded
by Liu et al. [2022]. Six of the seven observations were recognized with our method, the
exemption being the observation at 12:04:13 UT. This missed observation is still reflected
in the sequence of magnetosheath / magnetosphere classifications occurring near 12:05 UT,
but is beyond our 30 second window.
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Chapter 8

Bow Shock Model Data

Preparation

The bow shock crossing times derived from Section 7.2 are aligned with upstream solar

wind estimates of OMNI. Additional crossings along with upstream solar wind parameters

are prepared using Cluster, Imp 8, Geotail, and Magion-4. The creation of this cumulative

dataset is outlined in Section 3.2. Here we will show how we modify our crossing dataset

into an aberrated coordinate system to account for offsets in VY and VZ as well as the

transformations and rescalings required for training a neural network on the data.

8.1 Aberrated Coordinates

The orbital motion of the Earth around the Sun causes a +30 km/s offset in VY observations

in GSE. There is no such offset along Z, but large VY and VZ upstream solar wind values for

bow shock crossings can affect our ability to effectively parameterize the bow shock relative

to upstream solar wind effects. We will transform from GSE coordinates to an aberrated

coordinate system. Note that this aberration correction will not simply be a single 3d

rotation matrix to be applied to all data, but a unique 3d rotation matrix will be learned

for each point such that aberrated VZ will be 0, aberrated VY will be -30 km/s (such that

aberrated VY + VEarth = 0), and aberrated VX will be close to the original speed (as the
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velocity components due to VY and VZ have been collectively rotated into just VX). The

angles to aberrate the coordinates for VY and VZ are

αabr = arctan(
VY + 30

|VX |
) (8.1)

and

βabr = arctan(
VZ√

V 2
X + (VY + 30)2

). (8.2)

For each point, the full aberrated rotational matrix is then given by the matrix product

R(β;Y*) R(α;Z) where R(α;Z) means the 3d rotation matrix for rotating about the Z axis

by an angle α. The full aberrated rotation matrix is then given by

X⃗ ′ = R(β;Y ∗)R(α;Z)X⃗

=


cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ




cosα − sinα 0

sinα cosα 0

0 0 1




x

y

z

 ,

=


cosα cosβ − sinα cosβ − sinβ

sinα cosα 0

cosα sinβ − sinα sinβ cosβ




x

y

z

 ,

where X⃗ ′ and X⃗ are the position vectors for the aberrated GSE and GSE coordinates

respectively. These equations can also be seen as part of Equations 1 and 2 of Gencturk

Akay et al. [2019]. Plots of the crossings in X-Y, X-Z, and Y-Z positions in GSE and

aberrated GSE can be seen in Figure 8-1. Histograms of αabr and βabr can be seen in Figure

8-2. It should be carefully noted in this aberrated system that the rotation accounting for

the aberration due to VZ is not a rotation about the original Y axis but is instead about
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the Y* axis (the new Y axis that results from the Z axis rotation).

8.2 Data Rescaling

Neural networks generally work better with normally distributed data such that the means

and variances of each input feature are zero and one, respectively (LeCun et al. [2012]).

Magnetosonic mach number, plasma beta, dynamic pressure, and BZ are classic features

used to parameterize many different bow shock models as covered in Chapter 1. We incor-

porate these features, as well as the magnetic cone and clock angles. The dynamic pressure

being proportional to nionV
2
ion and plasma beta involving this term means that both of these

variables are typically skewed distributions (see the log10 beta and linear dynamic pressure

histograms in Figure 3-3). To reign this in, we apply a log10 transform to the pressure

and plasma beta, then standardize each training feature such that the resulting mean and

variance of each feature is 0 and 1, respectively. Histograms of the distributions of the

training data are seen in Figure 8-3. We note that while the histograms of the clock and

cone angles are shown in degrees for easier visual interpretation, we will use them in units

of radians for any model calculations. After, we do a 70%-15%-15% training-validation-test

split. This means our training, validation, and test set sizes are 10,264, 2,199, and 2,201

points, respectively. Violin plots of the standardized training data are shown in Figure 8-4.
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Figure 8-1: Plots of the X-Y, X-Z, and Y-Z positions in GSE for the unaberrated 14,664 bow
shock crossings are along plotted along the top row, respectively. The aberrated coordinates
are shown along the bottom row. Both plots are in units of RE and show each spacecraft
mission using a different color. Solid and dashed lines correspond to a Shue magnetopause
and a Chao bow shock using the same parameters as in Figure 6-2 (being BZ = 0.15 nT, β
= 2, MMS = 6, and Dp = 2 nPa). Both models are symmetric with respect to the Y and Z
axes so there is no difference between the model estimates in the X-Y and X-Z plots. Both
Y-Z plots show three Shue and Chao models which correspond to Y-Z slices at X = 0, -10,
and -20 RE moving from the center of the plot outward.
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Figure 8-2: Histograms of the aberration angles αabr and βabr. Many of the angles are small
with the means close to 4◦ and 0◦ as expected, but there are crossings present with quite
large angles.
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Figure 8-3: Histograms of the training data for each of the training features as well as the
spacecraft mission. Note that dips present in the MMS (labeled as “Mgs mach num”) are
due to the single decimal precision of Magnetosonic Mach number calculations provided by
OMNI.
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Figure 8-4: Violin plots of the features of the training data.
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Chapter 9

Bow Shock Model Development

In this chapter, we explain how the bow shock model is developed using neural networks.

We first discuss how we make a prediction in contrast to standard regression tasks, followed

by discovering the optimal hyperparameters for our architecture, then exploring the use of

an ensemble model in comparison to a single standard-trained model.

9.1 Prediction Design

In many regression tasks, the ultimate prediction of a neural network is directly compared

against the observed value in order to calculate the residual between them. In the context

of our bow shock modeling, this would lend the interpretation that a neural network needs

to predict a radius so that a residual can be computed. This is true, but the predicted

radius need not be the final output of a neural network designed for this task.

An important component of multiple previously developed bow shock models is their

parameterization with respect to upstream solar wind conditions. Training a neural network

to take input features and predict outright a corresponding bow shock shape can work, but

can be difficult to interpret. We take a different approach by assuming a functional form

for the radius that is reliant upon coefficients and use a neural network to predict them.

The bow shock radius function we will use has already been introduced as Equation 1.12,

and we repeat it here:
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R(θ, ϕ;R0, α0, α1, α2) = R0(
2

1 + cos θ
)α0+α1 cosϕ+α2 cos2 ϕ. (9.1)

The expression R(θ, ϕ;R0, α0, α1, α2) means that the bow shock radius R is a function θ

and ϕ assuming the coefficients R0, α0, α1, α2 are provided. The interpretations of the

coefficients and the symmetries and asymmetries they represent were previously covered in

Section 1.2 when discussing the bow shock model of Lu et al. [2019]. Worth noting is that

traditionally, functional characteristics of R0 and α0 were made by analyzing dayside (X >

0) fits for the former and nightside (X < 0) fits for the latter (again, see Lu et al. [2019]).

This approach is not taken here and crossing fits via neural network estimation are done

without compartmentalization.

Since three of the four coefficients are part of an exponential, care must be taken in

handling the predictions of a neural network because it is common that sensible predictions

only begin to arise after some training has undergone. To limit them, we truncate the

coefficients for each αi using a scaled and shifted sigmoid function of the form

αi ← −2 + 4(
1

1 + e−ai
). (9.2)

The * 4 multiplier stretches the limits of the sigmoid from (0,1) to (0,4) and the -2 shift

centers the output at 0 such that the new scale is (-2,2).

9.2 Neural Network Architecture and Hyperparameter Op-

timization

The architecture we will use to predict these coefficients from the input features is that of a

standard feed-forward neural network, or Multilayer Perceptron (MLP). We use the Pytorch

(Ansel et al. [2024]) python library to implement it, and the optimal hyperparameters we
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will determined using Optuna (Akiba et al. [2019]). To this end, we train the neural network

on the training data and report the loss on the validation set. We use a learning rate of

10−3, batch size of 32, L2 regularization constant of 10−4, and 100 epochs of training with

an early-stopping patience counter of 5. We vary the dropout probability, the number of

hidden layers, and the number of neurons for each hidden layer according to:

1. 0.01 ≤ dr ≤ 0.5,

2. 10 ≤ hi ≤ 100 for each hidden layer hi,

3. 2 ≤ nh ≤ 4.

It may come across as unusual that, for all the hyperparameters associated with the training

of neural networks, that the learning rate was not a varied hyperparameter. This is because

varying this while also incorporating early stopping on a validation set can cause certain

trials to be seen as best when realistically the validation loss only briefly dropped to a small

value by chance. There are more advanced methods to avoid this during hyperparameter

optimization, but nevertheless this is how it was done.

We perform three separate analyses which test for the optimal network hyperparameters

using only two, three, or four hidden layers. We separate the trials in this way so that the

sampler does not produce biased results (e.g. if the sampler if asked to generate a guess for

how many neurons should be in the third hidden layer, but only two hidden layers are used).

Each analysis consists of three hundred trials. The model parameters are saved at the end

of each epoch in order that they can be retrieved according to the optimal validation loss.

Parallel coordinate plots for each of the three analyses can be seen in Figures 9-1, 9-2, and

9-3. The best trial among all three analyses comes from the optimization done for four

layers and we next train a single model using similar hyperparameters.
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Figure 9-1: A parallel-coordinates plot of all trials done for the hyperparameter optimization
for two layers. The leftmost axis, labeled “Objective Value,” shows the range of losses on
the validation set where it’s clear that many of the trials result in comparable losses ≤
20. The axis to its right, “dr” for dropout, shows the dropout value that was used for
each trial. The subsequent axes, “h1” and “h2,” represent the number of neurons sizes
chosen for hidden layers one and two. The lines that connect across these axes represent
the values used for each trial. The validation loss is also illustrated with a color bar to the
far right, with larger losses in lighter blue and smaller losses in darker blue. The best trial
had validation loss 11.06 with parameters dr = 0.0440, h1 = 78, and h2 = 86.
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Figure 9-2: A parallel-coordinates plot like Figure 9-1, but for training neural networks
with three hidden layers. The best trial had a validation loss of 10.91 with parameters dr
= 0.0862, and {hi} = [70, 74, 59].
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Figure 9-3: A parallel-coordinates plot like Figure 9-1, but for training neural networks
with four hidden layers. The best trial had a validation loss of 10.67 with parameters dr =
0.0253, and {hi} = [90, 59, 43, 28].
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Figure 9-4: This plot shows the training (blue, solid lines) and validation (orange, dashed
lines) losses as a function of epoch number (with counting starting from 1). The vertical
dashed black line (epoch 63) indicates where the model weights were loaded from after the
patience count had been reached due to early-stopping. The training and validation losses
at that epoch are 10.64 and 10.69.

9.3 Training a Single Model

For training a single model, we will again use an L2 regularization of 10−4, a learning rate of

10−3, and 100 epochs of training. However, we increase the patience of early stopping to 10.

We use the hyperparameters of the best trial which comes from the four-layer analysis and

has hyperparameters dr = 0.0253 and {hi} = [90, 59, 43, 28]. The training and validation

losses of the resulting model can be seen as a function of epoch number in Figure 9-4.

9.4 Building the Ensemble

To build the ensemble, we will train multiple models using the same hyperparameters as

the single model from the previous section. However, to introduce greater diversity into the

model predictions, we will not simply train an ensemble on the same exact training dataset.

Instead we will utilize bootstrap aggregation, or bagging, to train models on unique subsets

of the training data, which will meaningfully diversify the cumulative predictions of the
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ensemble. While each member of the ensemble is trained based on the residuals between

its radius predictions for the bootstrap sample and the observations, it is the coefficients

predicted by each network that will ultimately comprise the ensemble as seen in Figure 9-5.

We prepare 300 bootstrap training samples by sampling from the training set with

replacement. Defining the ensemble to be the collection of all 300 models is too naive an

approach as some of the models could be poorly trained or have been trained on insufficiently

diverse training samples. We prune the ensemble by initially defining the ensemble to

contain all 300 members. The ensemble validation loss is then computed based on the mean-

coefficient predictions. The validation loss of each ensemble member is also computed, and

the model with the worst validation loss is then removed. The ensemble is then reformed

from the remaining members and this process is repeated until a single bootstrap-trained

model, the one with the best validation loss, remains. The resulting validation loss as a

function of number of models removed is shown in Figure 9-6. It is clear from the figure that

the model trained using the entire training set performs better than the best bootstrap-

trained model; it is also evident that the ensemble, even for just a meager three members,

is clearly superior to both. The optimal value corresponds to a validation loss of 10.0703

for a 16-member ensemble. Since there is a comparable loss out to the third decimal place

for a 12-member ensemble, we opt for this instead as it is more parsimonious. Comparisons

of the parameterizations of this ensemble vs the single model trained in Section 9.3 will be

made in the following section.

9.5 Ensemble and Single Model Comparisons

We define our ensemble to make radius predictions according to the mean of the coefficients

instead of the mean of the radii. This does not afford any significant error as we find

the mean-squared-error loss on the validation set using the mean-coefficient method to be
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Figure 9-5: Diagram representing how the ensemble is formed. For an ensemble of size Q,
Q bootstrap samples are created from the original training set and individual MLPs are
trained on each bootstrap sample such that each MLP predicts its own coefficient vector.
These coefficients, along with the θ and ϕ associated with each bow shock crossing, can be
supplied to our model function (represented here as R(θ, ϕ; c)) to predict a radius. The solid
lines descending from the Train set at the top correspond to the models and predictions for
each bootstrap sample. The dashed lines branching off between the coefficient and radius
predictions represent how the ensemble is formed from the mean of the coefficients instead
of the radii, allowing parameterization of each bootstrap model to be analyzed individually
and collectively as shown in Figure 9-7.
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Figure 9-6: The ensemble validation loss as a function of number of worst models removed
is shown above. The solid horizontal line is the validation loss of the best bootstrap-trained
model, and the dashed horizontal line is the validation loss of the single model that was
trained seeing the entire training set. Note that the true minimum occurs at x = 284 with
loss = 10.0703 (or a 16-member ensemble). A loss of 10.0707 occurs for x = 288, a 12-
member ensemble. In the interest of being more parsimonious, we will use the 12-member
ensemble since it has a comparable loss out to three decimal places with a 25% reduced
ensemble size.
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slightly below that of the mean-radius method (10.041 vs 10.071). The mean-coefficient

methods means that we can analyze the coefficient parameterizations for each model of the

ensemble as well as the ensemble mean, which we show in Figure 9-7. Some coefficients

have tight ensemble distributions such as the paramaterizations of R0 and α0 with respect

to MMS and dynamic pressure, which bear resemblances to their constrained functional

form used in other bow shock models (recall the inspiration of the inverse Mach number

relationship from Spreiter et al. [1966] or the D
−1/6
p dynamic pressure relation mentioned

in Section 1.2). Others have wider distributions, such as R0 and α0 as a function of plasma

beta or R0 as a function of cone angle. Also of note is the smaller ranges of α1 and α2

in the parameterizations. This is not that surprising as the terms represent the North-

South and azimuthal asymmetries respectively and the bow shock can be modeled quite

well as a radially symmetric paraboloid (a “rule-of-thumb” rough bow shock fitting can be

approximated using our model function with R0 = 13.75 RE , α0 = 0.75, and α1,2 = 0).

We can also make comparisons between the ensemble mean and fully-trained single

model, shown in Figure 9-8. Several ensemble mean profiles exhibit similar characteristics

as the fully-trained counterpart, looking again at R0 and α0 as functions of MMS and

dynamic pressure. Others however show notable deviation, such as a number of the α1,2

plots and the continual decrease in the ensemble-mean of α0 with respect to plasma beta.

Still others exhibit almost static behavior for some thresholds, such as the parameterizations

of α2 for plasma beta and dynamic pressure. Some of these parameterizations may exhibit

unusual curves, but we will ultimately gauge it on its resulting bow shock contours and it

performance relative to another bow shock model in the next section.
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Figure 9-7: Each solid line is a parameterization of a coefficient by a single model of the
ensemble. The dashed black line is the ensemble mean. Note the “inverted” nature of
the x and y labels relative to the plots. The column labels denote the coefficient being
parameterized (e.g. the left-most column shows the predictions of R0 relative to the input
features) and the row labels represent the input feature being varied for the coefficient
predictions (e.g. the top row shows the parameterizations of the four coefficients as a
function of BZ). So in effect, the row labels correspond to the values on the x axis and the
column labels to the values on the y axis.
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Figure 9-8: The x and y axes of the plots has similar structure to the plots of Figure 9-7.
The difference here is to showcase the difference in predictions between the fully-trained
single model coefficients (shown with a solid blue line) and the ensemble-mean coefficients
(shown with a dashed orange line).
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Chapter 10

Bow Shock Model Results

In this chapter, we will analyze the contours predicted by the constructed bow shock model

and compare it with the model of Chao et al. [2002].

10.1 BS Shape Predictions

To analyze the contours of the model, we need a consistent set of coefficients to base our

results on. Since our ensemble can produce a 3d array of coefficients (of shape [ensemble

size, number test points, number coefficients]) from the test set, we will take the ensemble

average and then the average over the test set (i.e. averaging over the 1st and 2nd dimensions

in that order). This yields coefficient values of (R0, α0, α1, α2) = (13.8486 RE , 0.7670,

-0.0141, 0.0355). Cross sections in the x-y, x-z, and y-z planes are seen in Figure 10-1 which

show both the Z and azimuthal asymmetry. The aspect ratio is the range over Z divided

by the range over Y. To further illustrate the azimuthal asymmetry, the aspect ratio is

computed as a function of X from 10 to -30 RE in the bottom right of the same figure.

We next explore the changes in shape of our model for the parameters BZ , plasma beta,

dynamic pressure, and magnetosonic mach number in Figures 10-2, 10-3, 10-4, and 10-5,

respectively. The Chao model for the corresponding parameters is shown as well. In these

comparisons, we will use a consistent set of parameters by taking the average parameter

values from the test set. These parameters (to three decimal places) are BZ = -0.101 nT,
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Figure 10-1: Top Left: The cross sections for x-y (along z=0) and x-z (for y=0) are plotted
as the dashed inner blue and dotted outer orange lines. The difference between them grows
with a decrease in X, illustrating the azimuthal asymmetry of the model. Top Right: The
same x-z cross section as shown in the top left plot, but the y axis is the absolute value of
Z. The dashed inner blue line is the x-z cross section for the positive Z axis and the dotted
outer orange line is the same cross section but corresponding to the negative Z axis, showing
the shows the Z asymmetry generated by the coefficients. Bottom Left: Three different
y-z cross sections are shown for x=0 (inner-most, dotted), x=-10 (middle, dash-dotted), and
x=-20 (outer-most, dashed). The top horizontal dashed grey line indicates the maximum
z value reached by the x=-20 cross section. The same line is plotted symmetrically along
negative Z to show the slight north-south asymmetry. Bottom Right: The aspect ratio
(z-range along y=0 divided by y-range along z=0) for each y-z cross section is plotted as a
function of X from 10 to -30 RE .
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β = 2.954, Dp = 3.028 nPa, MMS = 5.962, ϕB = -2.641 degrees, and θB = 89.214 degrees.

These will not be modified except when varying a single parameter at a time.

First we explore BZ in Figure 10-2. There is little change in the X-Y or X-negative Z

cross sections for our model, but there is an increase along X-positive Z, resulting in an

enhanced aspect ratio for positive BZ . As seen in Figure 10-3, beta causes a continual

contraction in X-Y due to the diminishing α0. X-positive Z is practically static, but X-

negative Z contracts with increasing beta, yielding an increasing aspect ratio.

The dynamic pressure in Figure 10-4 shows that for a relatively quiet solar wind pressure

of 2 nPa, our model aligns with Chao in the X-Y plane. Increasing pressure causes the X-Y

cross section to contract but not as much as that of Chao where the 10 nPa contour of our

model aligns with the 5 nPa contour of Chao. R0 decreases from almost 14 to 12 RE . The

aspect ratio for the for the low pressure case aligns almost exactly with the average and

higher pressures exhibit a similarly large aspect ratio, reflecting that the Y-axis compression

is larger than the Z-axis compression. This is a reflection of the α1 and α2 parameterizations

wherein α1 begins converging to 0 for Dp > 10 nPa (meaning a North-South symmetry)

and α2 converges to a constant ∼ 0.075 for Dp > 5 nPa (meaning a constant azimuthal

asymmetry).

The last parameter in common between our model and the Chao model is the magne-

tosonic mach number MMS , which we show in Figure 10-5. The lower MMS value of 5

shows a quite large R0 close to 16 RE with visually notably smaller X-Y flaring (here, just

the α0 term because cos(90) = cos(270) = 0) than Chao. The parameterization of R0 with

MMS does technically show a monotonically decreasing R0 for increasing values of MMS ,

but with an almost “switch-on” occurring at MMS = 5. The X-Z contour only slightly

changes in response to higher MMS , causing a continual decrease in the aspect ratio.

Since we have incorporated both BZ and the clock angle as input features, we need
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Figure 10-2: Three different model contours are shown for both our model and the Chao
model according to BZ = -5, 0, and 5 nT. Our model contours for these values correspond
to sparsely dotted (top of the legend in the top left plot), normally dotted (middle of the
legend), and dashed (bottom of the plot) lines. The Chao model contours for these values
are colored according to blue (the darkest color, top of the legend in the top right plot),
azure (the lighter blue color, the middle of the legend) and cyan (the brightest color, the
bottom of the legend). Top left: The X-Y cross sections for the positive Y axis at Z=0.
Top right: The X-Z cross sections for the positive Z axis at Y=0. Bottom left: The Y-Z
cross sections at X=0. The horizontal dashed grey line at the top indicates the maximum
z-axis value attained by our model. A symmetric horizontal dashed line is shown at the
bottom to help visually accentuate our the Z-axis asymmetry of our model. Bottom right:
The aspect ratio of our model as a function of X. The solid grey line corresponds to the
linear fit of the aspect ratio as a function of X seen in the bottom right of Figure 10-1
(that is, the aspect ratio according to average coefficients). Note that our model has Y
axis symmetry but not Z axis or azimuthal symmetry, meaning that the X-Y cross sections
are symmetric for the negative Y axis but not for the negative Z axis. The Chao model
has Y axis, Z axis, and Y-Z symmetry and so forms a radially symmetric parabola in the
X-Y and X-Z planes and constitutes a perfect circle in Y-Z cross sections. The full BZ

parameterization can be seen in the top row of Figure 9-8.
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Figure 10-3: Similar to the plot and model structure of Figure 10-2, but considers the
different model contours for β = 1, 5, and 15. The full β parameterization can be seen in
the second row of Figure 9-8.
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Figure 10-4: Similar to the plot and model structure of 10-2, but considers the different
model contours for Dp = 2, 5, and 10. The full Dp parameterization can be seen in the
third row of Figure 9-8.
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Figure 10-5: Similar to the plot and model structure of 10-2, but considers the different
model contours for MMS = 5, 6, and 7. The full MMS parameterization can be seen in the
fourth row of Figure 9-8.

115



to take care in the value supplied to BZ when studying the changes in clock angle. The

average BZ we have been using, ∼ -0.1 nT, means that the varying clock angle will only

reflect small values of BY or be outright incorrect if the clock angle indicates that the

azimuthal IMFY Z vector is in the wrong quadrant (i.e. if ϕB is -135◦, then BZ cannot be

positive). This means that BZ should be positive for |ϕB| ≤ 90◦ and negative otherwise.

Because of this, we will show two plots representing the change of the model in clock angle.

One will use a BZ magnitude corresponding to the average -0.1 nT and the other will use a

BZ with magnitude 1 nT (with sign correction accounted for in clock angle for both plots).

The bow shock contours for varying clock angle with a magnitude BZ = 0.1 nT are

shown in Figure 10-6. It exhibits slight oscillation in the X-Y plane and even less so in the

X-positive Z cross section. This results in two predominant clusters of lines in the aspect

ratio: A largely eastward IMF (45 ≤ ϕB ≤ 135 degrees) has a larger aspect ratio than

typical before diminishing back to the average value for increasing (southward-turning) ϕB.

And the other is the largely westward IMF (-45 ≤ ϕB ≤ -135 degrees) which exhibits smaller

aspect ratios than average. Also present is the divergence of predictions as ϕB converges

southward. Turning southward from east, the aspect ratio clearly decreases, but turning

southward from west, the aspect ration remains clustered and does not increase.

Next we analyze the bow shock contours for varying clock angle with magnitude 1 nT

in Figure 10-7. Like in the previous Figure, slight oscillations are again present in the

X-Y cross sections but are a little more pronounced in the X-positive Z plane with visible

contraction between eastward and westward ϕB. Correspondingly, a maximal aspect ratio

occurs for eastward ϕB and minimal aspect ratios for north, south, and westward ϕB.

Overall, these results show mixed agreement withWang et al. [2016] where they observed

in global MHD simulation results that the tail cross sections are stretched in directions

perpendicular to the IMFY Z direction. In both bow shock contours for |BZ | = 0.1 and
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1 nT, it is clear that eastward ϕB results in an expansion along X-positive Z and the

maximized aspect ratios reaffirm this. Northward and southward IMFY Z both produce

minimized aspect ratios, indicative of a relative stretching along X-Y (although a divergence

in the periodicity of ϕB is visible in the X-Y cross sections). However, there is also a

matter of explicit disagreement in the clock angle. Wang et al. [2018] analyzed spacecraft

observations and observed an increase in R0 with westward to eastward ϕB (or more exactly,

going from BY = -10 to 10 nT). From the clock angle parameterizations of Figure 9-7, our

model predicts R0 to only slightly increase from south-to-west-to-north IMFY Z and then

to decrease from north-to-east-to-south. Our flaring angle α0 also behaves oppositely where

Wang et al. [2018] observed a slight increase going from west to north (barring a single

sharp) before decreasing from north to east.

The cone angle θB dependence is seen in figure 10-8. For increasing cone angle, the X-Y

cross section first expands then compresses, the X-positive Z cross section strictly increases,

and R0 only decreases slightly. Like with the clock angle, we again see two clusters of

lines based on the cone angle. For quasi-sunward IMF (θB ≤ 45 degrees), the aspect

ratio only increases from 1.01 to 1.02 for X = 10 to -30 RE , indicating almost azimuthally

symmetric Y-Z cross sections. The aspect ratio then continually increases to just above the

average over a cone angle of 45 to 90 degrees (an azimuthal or radial IMF in which BX

reduces to ∼ 0 nT). The other cluster of lines then occurs for quasi-azimuthal IMF where

90 ≤ θB ≤ 135 degrees. This corresponds to the maximally expanded X-Y cross section,

causing the aspect ratio to briefly slightly decrease. At largely anti-sunward cone angles

(θB ≥ 135 degrees), the X-Y cross section begins to contract while the X-positive Z cross

section continues expanding. It can be noted from the Y-Z cross sections that the contour

continually contracts along the negative Z axis and that contour only slightly contracts

along the positive Z axis. This is because these cross sections are taken as X = 0 cuts.
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Figure 10-6: The plot structure is similar to that of 10-2 but now analyzes how our model
behaves with respect to the clock angle ϕB for a BZ magnitude of 0.1 nT. The Chao model
is not parameterized for clock angle and so a single contour is shown using the average test
set parameters. 30 different contours are plotted according to the colorbar at right ranging
from -180 to 180 degrees. Recall that ϕB is defined as zero along the positive Z axis and
increases along the direction of the positive y axis (i.e. clock-wise when looking straight
along the negative X axis) such that ϕB = 0 is northward positive Z axis), ϕB = -180 =
180 is southward (negative Z axis), ϕB = 90 is eastward (towards dawn, positive Y axis),
and ϕB = -90 is westward (towards dusk, negative Y axis). Eastward ϕB reduces the bow
shock aspect ratio and westward ϕB causes it to increase. From the X-Y and X-Z plots,
this change is moreso due to contraction and expansion along the Y axis, respectively. The
lack of periodicity is apparent with ϕB = 180 exhibiting a comparable aspect ratio to the
average and ϕB = -180 possessing the smallest aspect ratio. The full ϕB parameterization
can be seen in the top fifth of Figure 9-8.
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Figure 10-7: Same as Figure 10-6, but with a BZ magnitude of 1 nT. A divergence from the
periodicity of ϕB is again apparent in the X-Y and X-Z cross sections but is not present in
the aspect ratios. The aspect ratio heatmap indicates that there is a maximal aspect ratio
for roughly eastward ϕB. Conversely, a westward ϕB has comparable minimal aspect ratio
to a northward or southward ϕB.
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R0 decrease throughout all of this. This X-Y contraction conjoined with an X-Z expansion

causes the aspect ratio to climb.

10.2 Test Set Comparison with Chao et al. [2002]

Having covered the parameterizations and visual characteristics of the bow shock shape, we

now proceed to show numerical comparisons with Chao on the test set. When interpreting

the results, two points should be stressed: (1) It should be recalled from the discussion of

Chao et al. [2002] in Section 1.2 that their fitting was done for crossings that were only

aberrated according to VY and not VZ whereas ours was aberrated for both, and (2) our

test set contains a small number of large outliers that were not removed by our thresholding

done in Section 3.2.7. To address the latter point, two residual plots will be shown for each

comparison. One showing the residuals of both models on the original test set, and another

showing the residuals with the poorest 5% of predictions (according to Chao et al. [2002])

removed, giving a small handicap in favor of the model of Chao et al. [2002].

The residuals for the test set are shown in Figure 10-9 and show largely good agreement

for the original test set (barring the exceptional predicted outlier and a small handful of

moderate outliers). Removing 5% of the poorest Chao predictions reveals that our model

still has about one point less in loss, although the some of the largest errors in prediction

are made by our model. This makes sense as the Chao model was designed to best fit

the average bow shock positions as parameterized by BZ , dynamic pressure, MMS , and

plasma beta whereas our coefficients are nonlinear functions of these inputs (as well as

clock and cone angles). We also show how our model performs in the dayside and nightside

regions in Figures 10-10 and 10-11. The dayside plot shows the Chao model to have a

7% lower error than ours (3.21 for Chao vs 3.46) and indicates that both models slightly

overpredict the radii with ours overpredicting a bit further. The nightside plot shows our
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Figure 10-8: The plot structure is similar to that of 10-2 but now analyzes how our model
behaves with respect to the cone angle θB. The Chao model is not parameterized for cone
angle and so a single contour is shown using the average test set parameters. 30 different
contours are plotted according to the colorbar at right ranging from 0 to 180 degrees. A
θB between 0 and 72 degrees shows little change in X-Y, and increase in X-positive Z and
X-negative Z, and aspect ratios below average. θB between 72 and 144 show slight increase
in X-Y, a continuing upward shift of X-positive Z and X-negative Z, and comparable aspect
ratios that are above the average. θB ≥ 156 degrees exhibit sharp contraction along X-Y, a
further continuance of the upward shift in X-positive Z and X-negative Z and ever increasing
aspect ratios. Note that the first and last values of cone angle are physically rare as they
imply an IMF almost completely characterized by sunward / anti-sunward BX . The full θB
parameterization can be seen in the bottom row of Figure 9-8.
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model outperforming the Chao model by about 25% less error.

We next analyze our model performance for clock and cone angles. Quasi-eastward and

quasi-westward clock angles of the test set are shown in Figures 10-12 and 10-13, and both

indicate our model to outperform in these respects. It should be noted after the analysis

of the dayside region that both of these subsets include a number of dayside points and

our model still manages to perform better despite this. The model performance on radial

and non-radial cone angles is shown in Figures 10-14 and 10-15, showing that our model

outperforms by about 1 point in loss in both regimes. And last, regarding the abnormally

large bow shock contour predicted by our model for a MMS value of 5 in Figure 10-5, we

also show the model performance on test set points with MMS < 5 in Figure 10-16. It

shows that, even with this abnormally large R0, our model shows a slightly lower loss in

comparison to Chao.

10.3 Conclusions and Discussion

Machine learning approaches to regression have often been done by predicting a value

outright wherein the network performs nonlinear transformations on the input to improve

its predictions. Two unique contributions in our method are (1) the incorporation of the

bow shock model function into our loss function and (2) the formation of an ensemble via

bagging. These points could appear to run into conflict as coefficient prediction and loss

calculations of the resulting radii would not necessarily imply that the ensemble could be

well formed at the coefficient level, but we showed comparable error in doing so. This

allows for visualization of the parameterization of each model in the ensemble as well as the

ensemble-mean.

Our model has been shown to provide more accurate predictions than Chao et al. [2002]

for nightside crossings and with respect to clock and cone angles. However, theirs slightly
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Figure 10-9: The residuals (that is, the difference between the observations and the model
predictions) for both models on the original test set are shown in the top plot. The ob-
servations are plotted along the x axis, the model predictions along the y axis, and the
line of perfect prediction (i.e. prediction = observed) is plotted along the diagonal as a
dashed black line. To make a cleaner comparison without outliers, the residuals in which
the poorest 5% of predictions of Chao are removed is shown in the bottom plot. Our model
predictions are shown as a blue circle and Chao predictions are shown with an orange x.
With 5% removed, the test set is reduced from 2,201 points to 2,090.
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Figure 10-10: Like Figure 10-9, but only for dayside (X > 0) observations. The 5% removal
decreases the test set size from 973 points to 924.
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Figure 10-11: Like Figure 10-9, but only for nightside (X < 0) observations. The 5% removal
decreases the test set size from 1,223 points to 1,161.
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Figure 10-12: Like Figure 10-9, but only for quasi-eastward clock angles (i.e. 45◦ < ϕB <
135◦ such that BYZ largely points towards the positive Y axis). The 5% removal reduces
the test set from 624 to 609 points.
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Figure 10-13: Like Figure 10-9, but only for quasi-westward clock angles (i.e. −45◦ > ϕB >
−135◦ such that BYZ largely points towards the negative Y axis). The 5% removal reduces
the test set from 694 to 659 points.
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Figure 10-14: Like Figure 10-9, but only for radial cone angles (i.e. θB < 45◦ or θB > 135◦

such that it is BX dominated). The 5% removal reduces the test set from 857 to 814 points.
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Figure 10-15: Like Figure 10-9, but only for non-radial cone angles (i.e. 45◦ < θB < 135◦

such that BY Z dominates such that it is BX dominated). The 5% removal reduces the test
set from 1,344 to 1,276 points.
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Figure 10-16: Like Figure 10-9, but only test data with MMS < 5. The 5% removal reduces
the test set from 390 to 370 points.
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better predicts dayside crossings. This could be for a variety of reasons, possibly including

the time range and spatial distributions of the dataset in relation to solar cycle. Many

nightside crossings are taken from spacecraft with observations occurring from the 1970’s

to the 90’s whereas the dayside crossings largely come from THEMIS, MMS, and Cluster,

most of which were observed within the last 20 years.

Another caveat is the out-of-training or extrema predictions for the coefficients when

comparing the training distributions of Figure 8-3 and the coefficient parameterizations in

Figure 9-7. This is especially visible in the predictions for R0 for |BZ | ≥ 10 nT, beta ≥ 10,

low MMS , which could have contributed to the overprediction in dayside crossings.

We have two ideas for improvement: One is inspired by the success of Physics-Informed

Neural Networks (PINNs, Raissi et al. [2019]) and involves the further incorporation of

coefficient parameterizations that are already widely known. For example, Equation 1.4

describes the theoretical gas dynamical relationship between R0 and Mach number (as

shown in Spreiter et al. [1966]) or its modification by Farris and Russell [1994] could be

used. Another is to better represent the periodicity of the clock angle, which was not done.

This could be implemented by either only considering the IMF Cartesian components alone

(i.e. using the sin and cos components of the angle) or adding a custom penalty term to

the loss function for a 2π shifted input (e.g a penalty ∝ —M(ψ) - M(ψ + 2π)— for some

angular input ψ to the model M).
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Chapter 11

Summary and Future Work

11.1 Clustering Model Summary

We have taken magnetic field, ion velocity, ion density, and ion temperature measure-

ments from THEMIS and MMS observations at different time resolutions in order to predict

whether they occurred in the magnetosphere, magnetosheath, or the solar wind. The chang-

ing time step of THEMIS observations precludes the use of methods that need consistent

timing and requires that we utilize tools that consider only the joint set of measurements.

We have used a combination of unsupervised methods to cluster these data in a time inde-

pendent way, and it works remarkably well with measurements from different spacecraft.

Seeking to express some of the nonlinear variances of the data linearly, we constructed

additional features of magnetic field strength, ion speed, and the components of ion mo-

mentum density. Due to a range of orders of magnitude, features related to the ion density

or temperature were converted to log10 scale, or the log10-absolute scale in the case of the

ion momentum density. Partitioning the data into training and testing sets, these data were

then min-max normalized based on the training set. PCA was used to yield a smaller set of

uncorrelated features, both reducing the dimensionality and multicollinearity of the training

data. Translating the loadings of a PCA transformation into a plot, we correctly predicted

which regions of the PCA-transformed data would approximately correspond to certain an-
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ticipated clusters: higher temperatures (magnetosphere), higher densities (magnetosheath),

and higher speeds (solar wind).

To find a SOM that best represents outliers in the training data, we used KMeans to

build a micro training set of 10k points from the training data and made the remainder

of the training set a macro training set, or validation set. 500 maps were trained on this

micro training set and the hyperparameters of the SOM that returned an optimal value on

the macro training set were retained. A SOM with these hyperparameters was then trained

on the macro training set. Using the nodes of this map as representative samples of our

training set, the number of clustering options available for use was expanded such that even

transductive clustering methods could be utilized. The bulk of SOM nodes mapped to the

locations of expected clusters from the PCA transform along the 0th and 1st components

with the remainder of nodes distributed between them.

Next, we used hierarchical agglomerative clustering to cluster the nodes and make pre-

dictions on test data by propagating node cluster assignments to the data that the nodes

represent. We used this method with a Ward linkage, which focuses on building clusters

based on minimization of intra-cluster variance. The solar wind and magnetosphere clusters

were well separated from each other whereas the magnetosheath cluster had multiple nodes

that overlapped into both the solar wind and magnetosphere clusters, which is not surpris-

ing as the magnetosheath acts as a transition region. We investigated the magnetosheath

nodes that were surrounded by either solar wind or magnetosphere nodes to ascertain if

there were possible misclassifications, but detailed analysis showed that it was indeed cor-

rect that these nodes were classified as magnetosheath. The data mapping to these nodes

sometimes showed a mix of characteristics between magnetosheath and the surrounding

cluster, reaffirming that these magnetosheath nodes appear adjacent to the nodes of other

clusters. We also investigated where three magnetosphere-classified nodes were situated
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within the magnetosheath cluster and inspection of these nodes’ data revealed this classi-

fication to likely be incorrect. This data only represented 0.50% of the test set and did

not have sufficient alignment across all distributions for magnetosphere, magnetosheath, or

solar wind, so any classification of this data was done without strong confidence. Being a

hierarchical method, we also demonstrated how subpopulation analysis is possible, an ad-

vantage not available to most other clustering methods. However, this does not mean that

the uncovered subclusters will be as topologically “smooth” as parent clusters. We iden-

tified two magnetosphere-classified nodes in the map that indicate high VX-values, one of

which we confirmed activated during an MMS 1 observation of a BBF. We also showed how

our model can use gaps occurring in sequences of solar wind classifications to flag possible

HFAs and FBs.

The validation of the model was done both by visual inspection of both time series

and histograms as well as with comparison of the labeled dataset used in the training of a

prexisting model (Olshevsky et al. [2021]). It shows comparable accuracy with respect to

separating magnetosphere, magnetosheath, and solar wind at 99.4% but does not distinguish

between pristine solar wind and ion foreshock as well as their model. On the whole, the

model seems to be generally accurate but is capable of spurious and largely non-consecutive

misclassifications.

Having separated data into magnetosphere, magnetosheath, or solar wind regions, we

extract magnetopause and bow shock boundary crossings from the predictions on the full

dataset. We accounted for both misclassifications and changing time resolution by using

a 20 minute window for MMS and 40 minute window for THEMIS. We extracted 5,228

magnetopause crossings and 3,047 bow shock crossings. Analyzing the most recent solar

wind points from the bow shock crossings in the SOM, we found that these points were dis-

tributed across most of the solar wind-classified SOM nodes with the two largest containing
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almost 22% of the crossings. Performing the same analysis on the magnetosheath points

in the context of magnetopause crossings, we found them less evenly distributed than what

we saw for the solar wind nodes and noted that the three nodes with the highest number

of counts for these points accounted for 18% of the crossings but only 3% of the magne-

tosheath predictions. In both cases, the nodes mapping the highest fraction of crossings can

be useful in that data mapping to these nodes can be flagged as most likely to be related

to a boundary crossing.

The dataset used for our model, the resulting crossings, and the MMS1 dataset that

we joined with the labels of Olshevsky et al. [2021] can be found in a Zenodo repository

at Edmond et al. [2024a]. The pickled models used can be found in a separate repos-

itory at Edmond et al. [2024b]. We have made a python package, GMClustering, that

will easily make classifications and is pip-installable directly from its github repository at

https://github.com/jae1018/GMClustering. It includes both an example python driver file

and a small Jupyter notebook to showcase its use. Our modeling used various numerically-

oriented python packages and we include the versions of those most relevant below.

• Numpy Harris et al. [2020] : 1.24.3

• Scikit-Learn Pedregosa et al. [2011] : 1.3.0

• XPySom Mancini et al. [2020] : 1.0.7

• Pandas McKinney [2010] : 2.0.3

• SciPy Virtanen et al. [2020] : 1.11.1

11.2 Bow Shock Model Summary

We have created a bagged ensemble of neural networks that predict the coefficients used for

our model of the bow shock. The crossings used to train this model come from a variety of
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sources: the THEMIS and MMS bow shock crossing time and positions are derived from the

unsupervised classifier we created where upstream solar wind estimates provided by OMNI,

the Cluster bow shock crossings are taken from the predictions of Nguyen et al. [2022] with

upstream data also provided by OMNI, and with many of the nightside crossings taken from

a pre-existing database of IMP 8, Geotail, and Magion-4 observations with upstream solar

wind estimates either taken directly from the upstream measurements of the spacecraft

(IMP 8) or ballistically-propagated from Wind data (Geotail and Magion-4). The resulting

crossings are then filtered by removing the 1% extrema for BZ , dynamic pressure, plasma

beta, and MMS , transformed from GSE coordinates to aberrated GSE by aberrating for

both VY and VZ , and split into train, validation, and test sets with proportions 70%, 15%,

and 15%.

The input features for the model include common features of bow shock modeling such

as BZ , dynamic pressure, plasma beta, and magnetosonic Mach number. It is also the first

model to incorporate both magnetic clock and cone angles. The bow shock model assumes

a function to describe the radius as a function of θ, ϕ, and coefficients that govern the bow

shock shape. The model takes these inputs features and predicts the coefficients for this

function. This is advantageous to predicting the bow shock shape as these coefficients have

known physical interpretation (i.e. R0 being the subsolar point of the bow shock).

Since there are so few data points in the training set, splitting the training set into unique

subsets without replacement and training individual models on them cannot reasonably

produce good results. We address this by bootstrap-aggregating (“bagging”) the trained

networks on 300 bootstrap samples of the training set. For comparison, we also train a

single model on the full training set. We define the ensemble prediction to correspond to

the mean-coefficient prediction instead of the mean-radius and initially allow the ensemble

to contain all 300 of these bootstrap-trained networks. The ensemble is pruned by ranking
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each model according to its validation loss and removing the worst performing model. This

process is repeated until only one model remains, and we find a close-to-optimal member size

of 12 of these networks. The ensemble validation loss is shown to be lower than that of any

single bootstrap-trained network or the model trained on the full training set. Moreover,

we also find the the validation loss to be comparable when using either the mean-coefficient

or mean-radius approach.

The parameterizations of the coefficients as functions of the inputs features are then

analyzed in the context of the ensemble and in comparison to the model trained on the

full training set in Figures 9-7 and 9-8. We find some similarities between the ensemble-

mean parameterizations and known coefficient relationships, such as the decrease in R0

with dynamic pressure and magnetosonic Mach number. Others deviate from expectation

relative stability of α0 with respect to BZ or the gradual increase in R0 for beta > 10. There

is also mixed agreement with Wang et al. [2016] in that Y-Z cross sections are stretched

perpendicular to the IMF direction for the east, north, and south clock angle cases, although

westward does not produce a North-South stretching, and disagreement with Wang et al.

[2018] in the behavior of R0 and α with respect to the clock angle.

We compare our model to Chao et al. [2002] both on the original test set and a reduced

test set in which 5% of the worst predictions (in favor of Chao) are removed for clearer

comparison and find generally improved prediction with respect to clock and cone angles.

It is also found to be more accurate in nightside bow shock crossing predictions, but slightly

poorer on the dayside owing to overprediction of R0.

11.3 Future Work

There is future work that can be done for both models. With regards to the classifier, we

showed that we could potentially flag HFAs / FBs due to gaps in the solar wind classification,
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finding agreement with some of the HFAs / FBs reported by Liu et al. [2022], and BBFs by

checking for distinct node activations. Their could be a follow-up publication to show the full

efficacy of such an approach or investigate if any other unique magnetospheric phenomena

correlate with certain node activations. Additionally, the hierarchical organization of any

of the classified nodes (with respect to magnetosphere, magnetosheath, or solar wind) could

be investigated to see if sub-regions correspond to particular nodes.

As for the bow shock model, the results show an improvement over Chao et al. [2002]

with respect to clock and cone angles but some mixed agreement withWang et al. [2016] and

disagreement with Wang et al. [2018]. An ensemble approach indisputably improved the

performance overall but could also lead to abnormal coefficient prediction on out-of-training-

bounds data. This approach could be improved by incorporating known relationships of

some of the coefficients into the loss function as well as use of the Cartesian components of

IMF as opposed to the clock angle.
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